Что такое датчик суд

Обновлено: 25.04.2024


Существует огромное количество систем управления двигателей и их модификаций. Для этого рассмотрим различные варианты ЭСУД, которые когда-либо устанавливались на серийно выпускаемые автомобили.
ЭСУД применяемые на автомобилях
ЭСУД — это электронная система управления двигателем или по-простому компьютер двигателя. Он считывает данные с датчиков двигателя и передает указания на исполнительные системы. Это все делается, что двигатель работал в оптимальном для него режиме и сохранял нормы токсичности и потребления топлива.
Обзор электронной системы управления двигателем будет приводиться на примере инжекторных автомобилей ВАЗ. Разобьем ЭСУД на некоторые группы по критериям.
Производитель электронной системы управления
Для автомобилей автозавода ВАЗ использовались системы управления двигателем компаний Bosch, General Motors и СУД отечественной производства. Если вы хотите заменить какую-нибудь деталь системы впрыска, например производства Bosch на производства Bosch, то это окажется невозможным, т.к. детали невзаимозаменяемые. А вот отечественные детали впрыска топлива иногда оказываются аналогичными деталям иностранного производства.
Разновидности контроллеров управления двигателем
На вазовских автомобилях можно встретить следующие типы контроллеров:
1. Январь 5 — производство Россия;
2. M1.5.4 — производство Bosch;
3. МР7.0 — производство Bosch;
Кажется, что контроллеров не много, а на самом деле все сложней. Для примера, контроллер M1.5.4 для системы без нейтрализатоpa не подходит для системы с нейтрализатором. И они считаются невзаимозаменяемыми. Контроллер МР7.0 для системы "Eвpo-2" не может быть установлен на автомобиль "Евро-3". Хотя установить контроллер МР7.0 для системы "Eвpo-3" на автомобиль с экологическими нормами токсичности "Евро-2" возможно, но для этого потребуется перепрошить программное обеспечение контроллера.
Типы впрыска
По этому параметру можно разделить системы впрыска на систему центрального (одноточечного) и распределенного (многоточечного) впрыска топлива. В системе центрального впрыска форсунка подает топливо во впускной трубопровод перед дроссельной заслонкой. В системах распределенного впрыска каждый цилиндр имеет свою форсунку, которая подает топливо непосредственно перед впускным клапаном.
Системы распределенного впрыска разделяются на фазированные и не фазированные. В не фазированных системах впрыск топлива может осуществляться или всеми форсунками в одно время или парами форсунок. В фазированных системах впрыск топлива осуществляется последовательно каждой форсункой.
Нормы токсичности
В разные времена собирались автомобили, который соответствовали требованиям стандартов по токсичности отработавших газов от "Евро-0" до "Евро-4". Автомобили, который соответствуют нормам "Евро-0" выпускаются без нейтрализаторов, системы улавливания паров бензина, датчиков кислорода.
Отличить автомобиль в комплектации "Евро-3" от автомобиля с комплектацией "Евро-2" можно по наличию датчика неровной дороги, внешнему виду адсорбера, а также по числу датчиков кислорода в выпускной системе двигателя (в комплектации "Евро-2" он один, а в комплектации "Евро-3" их два).
Определения и понятия
Контроллер — главный компонент электронной СУД. Оценивает информацию от датчиков о текущем режиме работы двигателя, выполняет достаточно сложные вычисления и управляет исполнительными механизмами.
Датчик массового расхода воздуха (ДМРВ) — преобразует значение массы воздуха, поступающего в цилиндры, в электрический сигнал. Подробнее в статье "что такое ДМРВ".
Датчик скорости — преобразует значение скорости автомобиля в электрический сигнал.
Датчик кислорода — преобразует значение концентрации кислорода в отработавших газах после нейтрализатора в электрический сигнал. Подробнее в статье "что такое датчик кислорода".
Датчик кислорода управляющий — преобразует значение концентрации кислорода в отработавших газах до нейтрализатора в электрический сигнал.
Датчик неровной дороги — преобразует величину вибрации кузова в электрический сигнал.
Датчик фаз — его сигнал информирует контролер о том, что поршень первого цилиндра находится в ВМТ (верхняя мертвая точка) на такте сжатия топливовоздушной смеси.
Датчик температуры охлаждающей жидкости — преобразует величину температуры охлаждающей жидкости в электрический сигнал.
Датчик положения коленвала — преобразует угловое положение коленвала в электрический сигнал.
Датчик положения дроссельной заслонки — преобразует значение угла открытия дроссельной заслонки в электрический сигнал.
Датчик детонации — преобразует величину механических шумов двигателя в электрический сигнал
Модуль зажигания — элемент системы зажигания, накапливающий энергию для воспламенения смеси в двигателе и обеспечивает высокое напряжение на электродах свечи зажигания.
Форсунка — элемент системы топливоподачи, обеспечивающий дозирование топлива.
Регулятор давления топлива — элемент системы топливоподачи, обеспечивающий постоянство давления топлива в подающей магистрали.
Адсорбер — главный элемент системы улавливания паров бензина.
Модуль бензонасоса — элемент системы топливоподачи, обеспечивающий избыточное давление в топливной магистрали.
Клапан продувки адсорбера — элемент системы улавливания паров бензина, управляющий процессом продувки адсорбера
Топливный фильтр — элемент системы топливоподачи, фильтр тонкой очистки.
Нейтрализатор — элемент системы впрыска двигателя для снижения токсичности выхлопных газов. В результате химической реакции с кислородом в присутствии катализатора оксид углерода, углеводороды СН и окислы азота превращаются в азот, воду, а также в двуокись углерода.
Диагностическая лампа — элемент системы бортовой диагностики, которая информирует водителя о наличии неисправности в СУД.
Диагностический разъем — элемент системы бортовой диагностики, для подключения диагностического оборудования.
Регулятор холостого хода — элемент системы поддержания холостого хода, который регулирует на холостом ходу подачу воздуха в двигатель.


Здесь описаны датчики и исполнительные механизмы применяемые в ЭСУД. Кратко описан принцип действия и методы проверки, без применения спец. и диагностического оборудования, если это возможно. Доступные каждому, кто имеет мультиметр и\или БК.
Датчики
1. ДМРВ На автомобилях семейства ВАЗ-2110 устанавливаются датчики массового расхода воздуха термоанемометрического типа.


Чувствительный элемент датчика представляет собой тонкую пленку, на которой расположено несколько температурных датчиков и нагревательный резистор. В середине пленки находится область подогрева, степень нагрева которой контролируется с помощью температурного датчика. На поверхности пленки со стороны потока воздуха и с противоположной стороны симметрично расположены еще два термодатчика, которые при отсутствии потока воздуха регистрируют одинаковую температуру. При наличии потока воздуха первый датчик охлаждается, а температура второго остается практически неизменной, вследствие подогрева потока воздуха в зоне нагревателя. Дифференциальный сигнал обоих датчиков пропорционален массе проходящего воздуха. Электронная схема датчика преобразует этот сигнал в постоянное напряжение, пропорциональное массе воздуха.Важно, чтоб датчик оставался в чистоте, так-как загрязнение вызовет искажение показаний датчика.Так-же он требователен к качеству фильтрации всасываемого воздуха, так-как попавшая пыль, пролетая через датчик, режет плёнку чувствительного элемента. Что приводит к безвозвратному выходу датчика из строя.
Устанавливается датчик здесь…


Итак о проверке…
Проверка заключается в измерении напряжения покоя датчика, то-есть напряжения, которое выдаёт датчик, при включённом зажигании, но не запущенном двигателе. Измерение можно проводить как с помощью БК, так и с помощью обычного мультиметра. Лучше конечно если мультиметр будет не самый дешевый и китайский.
Если установлен БК, нужно посмотреть параметры каналов АЦП(аналого-цифрового преобразователя).Для проверки ДМРВ мультиметром, аккуратно прокалывая проводку разъёма датчика, измеряем напряжение между 3(масса ДМРВ) и 5(сигнал) контактами.


Показания должны быть 0,996В-для нового, 1,07-для убитого датчика.

2. Датчик кислорода(ДК) или Лямбда-Зонд.


Чувствительный элемент датчика кислорода находится в потоке отработавших газов.При достижении датчиком рабочих температур, превышающих 360 град. С, он начинает генерировать собственную ЭДС, пропорциональную содержанию кислорода в отработанных газах. На практике, сигнал ДК представляет собой быстро изменяющееся напряжение, колеблющееся между 500 и 900 милливольт. Изменение напряжения вызвано тем, что система управления постоянно изменяет состав смеси вблизи точки стехиометрии(идиальной пропорции воздух-топливо, 14,7кг воздуха на 1 кг топлива), сам ДК не способен генерировать какое-либо переменное напряжение, а лишь изменяет опроное. Для ускорения прогрева датчика до рабочей температуры он снабжен электрическим нагревательным элементом.
Устанавливается датчик либо так…



( коллектор А-21124;Коллектор В-21114)
На двигателях с экологическими нормами Евро-3 устанавливаются два ДК, один до катализатора, другой после.Второй датчик служит для контроля работы катализатора…

Метод проверки заключается в том, что при прогретом двигателе, с помощью мультиметра(лучше аналогового-стрелочного) наблюдается изменение напряжения.Если изменений нет, при исправных цепях и прогреве датчика, а напряжение лежит выше или ниже указаного предела, то датчик "отравлен" и подлежит замене.Так-же следует учесть, что многие дешевые мультиметры, обладают большой инерционностью и не позволят произвести точное измерение из-за часто меняющегося напряжения(аналоговый(стрелочный) мультиметр сдесь выигрывает).Но изменение контролировать удастся…
3. Датчик температуры охлаждающей жидкости(ДТОЖ)
Датчик температуры охлаждающей жидкости представляет собой термистор, т.е. резистор, электрическое сопротивление которого изменяется в зависимости от температуры. Термистор, расположенный внутри датчика имеет отрицательный температурный коэффициент сопротивления, т.е. при нагреве его сопротивление уменьшается.


Проверка производится с применением градусника.Нагревая и охлаждая датчик, например в воде, измеряем сопротивление датчика и сравниваем с данными в таблице, приведённой ниже и показаниями контрольного градусника.
Приблизительная зависимость сопротивления от температуры:
Температура грС--Сопротивление Ом
100--177
90--241
80--332
70--467
60--667
50--973
45--1188
40--1459
30--2238
25--2796
20--3520
15--4450
10--5670
5--7280
0--9420
-5--12300
-10--16180
-15--21450
-20--28680
-30--52700
-40--100700
4.Датчик положения дроссельной заслонки(ДПДЗ)


Установлен сбоку на дроссельном патрубке и связан с осью дроссельной заслонки.

Датчик представляет собой потенциометр, на один конец которого подаётся плюс напряжения питания (5 В), а другой конец соединен с массой.С третьего вывода потенциометра(от ползунка) идёт выходной сигнал к контроллеру.Когда дроссельная заслонка поворачивается(от воздействия на педаль управления), изменяется напряжение на выходе датчика.При закрытой дроссельной заслонки оно ниже 0.7 В.Когда заслонка открывается, напряжение на выходе датчика растёт и при полностью открытой заслонки должно быть более 4 В.Отслеживая выходное напряжение датчика контроллер корректирует подачу топлива в зависимости от угла открытия дроссельной заслонки(т.е. по вашему желанию).Датчик положения дроссельной заслонки не требует никакой регулировки, т.к. контроллер самостоятельно определяет минимальное напряжение датчика и принимает его за нулевую отметку.
К сожалению без применения осциллографа не возможно определить состояние датчика, но можно хотя-бы проверить функционирование датчика.
При плавном нажатии на педаль газа, на БК должно меняться процентное открытие заслонки(0% открытия-1%-2%-3% и так далее), а при измерении напряжения на разъёме датчика,


между контактами 1(масса датчика) и 2(сигнал ДПДЗ), напряжение должно меняться плавно без скачков.Если на БК происходит перескакивание % открытия(1%-2%-8%-3%), а на мультиметре просходят скачки напряжения, стоит задуматься о его замене…
5.Датчик положения коленчатого вала(ДПКВ)
ДПКВ, самый важный датчик ЭСУД.Система управления может функционировать без любого датчика, кроме ДПКВ.Если он неисправен двигатель не запустится.


ДПКВ подаёт в контроллер сигнал частоты вращения и положения коленчатого вала.Этот сигнал представляет собой серию повторяющихся электрических импульсов напряжения, генерируемых датчиком при вращении коленчатого вала.На базе этих импульсов контроллер управляет форсунками и системой зажигания.


ДПКВ установлен на крышке масляного насоса


на расстоянии около 1+0,4мм от задающего диска (шкива, репера) коленчатого вала.


Шкив коленчатого вала имеет 58 зубцов расположенных по окружности.Зубцы равноудалены и расположены через 6°.Для генерирования "импульса синхронизации" два зуба на шкиве отсутствуют.При вращении коленчатого вала зубцы диска изменяют магнитное поле датчика, создавая наведенные импульсы напряжения.По импульсу синхронизации от датчика положения коленчатого вала, контроллер определяет положение и частоту вращения коленчатого вала и рассчитывает момент срабатывания форсунок и модуля зажигания.Провод ДПКВ защищён от помех экраном, замкнутым на массу через контроллер.Датчик ПКВ — полярный прибор — при нарушении проводки следует подключать соблюдая полярность.В "обратном" включении двигатель не заведется.
Доступный метод проверки заключается в измерении сопротивления обмотки датчика, оно должно лежать в пределах 550-750 Ом.Если есть отклонения, следует заменить его.
Так-же на датчике не должно быть примагниченных частиц металла, грязи и масла.
И личный совет:"Возите с собой запасной датчик".
6. Датчик скорости автомобиля(ДС)


Принцип действия датчика скорости основан на эффекте Холла.Датчик выдаёт на контроллер импульсы напряжения с частотой, пропорциональной скорости вращения ведущих колёс.Все датчики 6-ти импульсные, то есть выдают 6 импульсов за один оборот своей оси.Сигнал датчика скорости используется системой управления для определения порогов отключения подачи топлива, а также для электронного ограничения скорости автомобиля (в последних системах управления).
Устанавливать привод спидометра в тех моделях, где он есть, в коробку передач нужно очень аккуратно, при малейшем перекосе сомнутся пластмассовые зубья ведущей шестерни привода спидометра и разборка коробки передач неизбежна.
К сожалению, произвести проверку ДС, без спец. средств не возможно.С помощью БК и штатного спидометра можно лишь контролировать его работу.Не должно быть сильных скачков скорости при движении.Скачки могут быть вызваны как самим неисправным датчиком, так и механизмом его привода.
7.Датчик фаз(ДФ)




А на двигателе 2112 вот здесь:


8. Датчик детонации(ДД)
Датчик Детонации (ДД) служит для обнаружения детонационных ударов в ДВС и расположен на блоке цилиндров.Конструктивно датчик представляет собой пьезокерамическую пластину в корпусе.Существует две разновидности ДД — резонансные и более современные широкополосные.


В настоящее время резонансные ДД не устанавливаются серийно.
ДД, при работе двигателя, за счёт пьезо элемента генерирует импульсы, которые ЭБУ отфильтровывает по заложенному в нём алгоритму.При возникновении детонации, ЭБУ фиксирует сигналы с ДД и "заваливает" УОЗ, чтоб предупредить воздейсвие детонационных явлений на детали двигателя.
Проверка датчика на работоспособность производится путём подключении к выводам датчика мультиметра в режиме измерения милливольт и легкими постукиваниями по сердцевине датчика.При этом регистрируются скачки напряжения.
Обычно ДД крепится на блоке цилиндров болтом, но проведённые эксперименты говорят о том, что для крепления датчика лучше использовать шпильку.Так шумы лучше передаются в датчик.Момент затяжки датчика 1.6-2.2 кг.
9. Датчик неровной дороги(ДНД)
Датчик неровной дороги,


работает на основе пьезо-эффекта.При прохождении автомобилем неровностей генерирует импульсы и посылает их в ЭБУ.Устанавливается на автомобили с экологическими нормами Е-3 и выше.Суть его работы в том, что при прохождении автомобилем неровностей образуется неравномерность вращения коленчатого вала автомобиля, которые могут регистрироваться ЭБУ как пропуски воспламенения.Эбу отключит подачу топлива в цилиндр, который якобы в тот момент имел пропуск воспламенения, и двигатель "затроит".Чтоб не допустить ложных срабатываний системы диагностики пропусков, в ЭСУД был введён этот датчик.И эбу сверяя сигнал с ДНД и неравномерность вращения делает правильный вывод, произошел пропуск или нет.Датчик устанавливается на правой(по ходу автомобиля) стойке и прикручивается под гайку крепления верхней опоры.


Здесь описанны датчики и исполнительные механизмы применяемые в ЭСУД.Кратко описан принцип действия и методы проверки, без применения спец. и диагностического оборудования, если это возможно.Доступные каждому, кто имеет мультиметр и\или БК.

1. ДМРВ На автомобилях семейства ВАЗ-2110 устанавливаются датчики массового расхода воздуха термоанемометрического типа.


Чувствительный элемент датчика представляет собой тонкую пленку, на которой расположено несколько температурных датчиков и нагревательный резистор.В середине пленки находится область подогрева, степень нагрева которой контролируется с помощью температурного датчика.На поверхности пленки со стороны потока воздуха и с противоположной стороны симметрично расположены еще два термодатчика, которые при отсутствии потока воздуха регистрируют одинаковую температуру.При наличии потока воздуха первый датчик охлаждается, а температура второго остается практически неизменной, вследствие подогрева потока воздуха в зоне нагревателя.Дифференциальный сигнал обоих датчиков пропорционален массе проходящего воздуха.Электронная схема датчика преобразует этот сигнал в постоянное напряжение, пропорциональное массе воздуха.Важно, чтоб датчик оставался в чистоте, так-как загрязнение вызовет искажение показаний датчика.Так-же он требователен к качеству фильтрации всасываемого воздуха, так-как попавщая пыль, пролетая через датчик, режет плёнку чувствительного элемента.Что приводит к безвозвратному выходу датчика из строя.
Устанавливается датчик здесь…


Итак о проверке…
Проверка заключается в измерении напряжения покоя датчика, то-есть напряжения, которое выдаёт датчик, при включённом зажигании, но не запущенном двигателе.Измерение можно проводить как с помощбю БК, так и с помощью обычного мультиметра.Лучше конечно если мультиметр будет не самый дешевый и китайский.
Если установлен БК, нужно посмотреть параметры каналов АЦП(аналого-цифрового преобразователя).Для проверки ДМРВ мультиметром, аккуратно прокалывая провода у разъёма датчика, измеряем напряжение между 3(масса ДМРВ) и 5(сигнал) контактами.
Показания должны быть 0,996В-для нового, 1,07-для убитого датчика.

2. Датчик кислорода(ДК) или Лямбда-Зонд.


Чувствительный элемент датчика кислорода находится в потоке отработавших газов.При достижении датчиком рабочих температур, превышающих 360 град. С, он начинает генерировать собственную ЭДС, пропорциональную содержанию кислорода в отработанных газах.На практике, сигнал ДК представляет собой быстро изменяющееся напряжение, колеблющееся между 500 и 900 милливольт.Изменение напряжения вызвано тем, что система управления постоянно изменяет состав смеси вблизи точки стехиометрии(идиальной пропорции воздух-топливо, 14,7кг воздуха на 1 кг топлива), сам ДК не способен генерировать какое-либо переменное напряжение, а лишь изменяет опроное.Для ускорения прогрева датчика до рабочей температуры он снабжен электрическим нагревательным элементом.
Устанавливается датчик либо так…



( коллектор А-21124;Коллектор В-21114)
На двигателях с экологическими нормами Евро-3 устанавливаются два ДК, один до катализатора, другой после.Второй датчик служит для контроля работы катализатора…
Метод проверки заключается в том, что при прогретом двигателе, с помощью мультиметра(лучше аналогового-стрелочного) наблюдается изменение напряжения.Если изменений нет, при исправных цепях и прогреве датчика, а напряжение лежит выше или ниже указаного предела, то датчик "отравлен" и подлежит замене.Так-же следует учесть, что многие дешевые мультиметры, обладают большой инерционностью и не позволят произвести точное измерение из-за часто меняющегося напряжения(аналоговый(стрелочный) мультиметр сдесь выигрывает).Но изменение контролировать удастся…

3. Датчик температуры охлаждающей жидкости(ДТОЖ)
Датчик температуры охлаждающей жидкости представляет собой термистор, т.е. резистор, электрическое сопротивление которого изменяется в зависимости от температуры. Термистор, расположенный внутри датчика имеет отрицательный температурный коэффициент сопротивления, т.е. при нагреве его сопротивление уменьшается.


Проверка производится с применением градусника.Нагревая и охлаждая датчик, например в воде, измеряем сопротивление датчика и сравниваем с данными в таблице, приведённой ниже и показаниями контрольного градусника.
Приблизительная зависимость сопротивления от температуры:
Температура грС--Сопротивление Ом
100--177
90--241
80--332
70--467
60--667
50--973
45--1188
40--1459
30--2238
25--2796
20--3520
15--4450
10--5670
5--7280
0--9420
-5--12300
-10--16180
-15--21450
-20--28680
-30--52700
-40--100700

4. Датчик положения дроссельной заслонки(ДПДЗ)


Установлен сбоку на дроссельном патрубке и связан с осью дроссельной заслонки.

Датчик представляет собой потенциометр, на один конец которого подаётся плюс напряжения питания (5 В), а другой конец соединен с массой.С третьего вывода потенциометра(от ползунка) идёт выходной сигнал к контроллеру.Когда дроссельная заслонка поворачивается(от воздействия на педаль управления), изменяется напряжение на выходе датчика.При закрытой дроссельной заслонки оно ниже 0.7 В.Когда заслонка открывается, напряжение на выходе датчика растёт и при полностью открытой заслонки должно быть более 4 В.Отслеживая выходное напряжение датчика контроллер корректирует подачу топлива в зависимости от угла открытия дроссельной заслонки(т.е. по вашему желанию).Датчик положения дроссельной заслонки не требует никакой регулировки, т.к. контроллер самостоятельно определяет минимальное напряжение датчика и принимает его за нулевую отметку.
К сожалению без применения осциллографа не возможно определить состояние датчика, но можно хотя-бы проверить функционирование датчика.
При плавном нажатии на педаль газа, на БК должно меняться процентное открытие заслонки(0% открытия-1%-2%-3% и так далее), а при измерении напряжения на разъёме датчика, между контактами 1(масса датчика) и 2(сигнал ДПДЗ), напряжение должно меняться плавно без скачков.Если на БК происходит перескакивание % открытия(1%-2%-8%-3%), а на мультиметре просходят скачки напряжения, стоит задуматься о его замене…

5. Датчик положения коленчатого вала(ДПКВ)
ДПКВ, самый важный датчик ЭСУД.Система управления может функционировать без любого датчика, кроме ДПКВ.Если он неисправен двигатель не запустится.


ДПКВ подаёт в контроллер сигнал частоты вращения и положения коленчатого вала.Этот сигнал представляет собой серию повторяющихся электрических импульсов напряжения, генерируемых датчиком при вращении коленчатого вала.На базе этих импульсов контроллер управляет форсунками и системой зажигания.


ДПКВ установлен на крышке масляного насоса


на расстоянии около 1+0,4мм от задающего диска (шкива, репера) коленчатого вала.


Шкив коленчатого вала имеет 58 зубцов расположенных по окружности.Зубцы равноудалены и расположены через 6°.Для генерирования "импульса синхронизации" два зуба на шкиве отсутствуют.При вращении коленчатого вала зубцы диска изменяют магнитное поле датчика, создавая наведенные импульсы напряжения.По импульсу синхронизации от датчика положения коленчатого вала, контроллер определяет положение и частоту вращения коленчатого вала и рассчитывает момент срабатывания форсунок и модуля зажигания.Провод ДПКВ защищён от помех экраном, замкнутым на массу через контроллер.Датчик ПКВ — полярный прибор — при нарушении проводки следует подключать соблюдая полярность.В "обратном" включении двигатель не заведется.
Доступный метод проверки заключается в измерении сопротивления обмотки датчика, оно должно лежать в пределах 550-750 Ом.Если есть отклонения, следует заменить его.
Так-же на датчике не должно быть примагниченных частиц металла, грязи и масла.
И личный совет:"Возите с собой запасной датчик".

6. Датчик скорости автомобиля(ДС)


Принцип действия датчика скорости основан на эффекте Холла.Датчик выдаёт на контроллер импульсы напряжения с частотой, пропорциональной скорости вращения ведущих колёс.Все датчики 6-ти импульсные, то есть выдают 6 импульсов за один оборот своей оси.Сигнал датчика скорости используется системой управления для определения порогов отключения подачи топлива, а также для электронного ограничения скорости автомобиля (в последних системах управления).
Устанавливать привод спидометра в тех моделях, где он есть, в коробку передач нужно очень аккуратно, при малейшем перекосе сомнутся пластмассовые зубья ведущей шестерни привода спидометра и разборка коробки передач неизбежна.
К сожалению, произвести проверку ДС, без спец. средств не возможно.С помощью БК и штатного спидометра можно лишь контролировать его работу.Не должно быть сильных скачков скорости при движении.Скачки могут быть вызваны как самим неисправным датчиком, так и механизмом его привода.

7. Датчик фаз(ДФ)



8. Датчик детонации(ДД)
Датчик Детонации (ДД) служит для обнаружения детонационных ударов в ДВС и расположен на блоке цилиндров.Конструктивно датчик представляет собой пьезокерамическую пластину в корпусе.Существует две разновидности ДД — резонансные и более современные широкополосные.


В настоящее время резонансные ДД не устанавливаются серийно.
ДД, при работе двигателя, за счёт пьезо элемента генерирует импульсы, которые ЭБУ отфильтровывает по заложенному в нём алгоритму.При возникновении детонации, ЭБУ фиксирует сигналы с ДД и "заваливает" УОЗ, чтоб предупредить воздейсвие детонационных явлений на детали двигателя.
Проверка датчика на работоспособность производится путём подключении к выводам датчика мультиметра в режиме измерения милливольт и легкими постукиваниями по сердцевине датчика.При этом регистрируются скачки напряжения.
Обычно ДД крепится на блоке цилиндров болтом, но проведённые эксперименты говорят о том, что для крепления датчика лучше использовать шпильку.Так шумы лучше передаются в датчик.Момент затяжки датчика 1.6-2.2 кг.

9. Датчик неровной дороги(ДНД)


работает на основе пьезо-эффекта.При прохождении автомобилем неровностей генерирует импульсы и посылает их в ЭБУ.Устанавливается на автомобили с экологическими нормами Е-3 и выше.Суть его работы в том, что при прохождении автомобилем неровностей образуется неравномерность вращения коленчатого вала автомобиля, которые могут регистрироваться ЭБУ как пропуски воспламенения.Эбу отключит подачу топлива в цилиндр, который якобы в тот момент имел пропуск воспламенения, и двигатель "затроит".Чтоб не допустить ложных срабатываний системы диагностики пропусков, в ЭСУД был введён этот датчик.И эбу сверяя сигнал с ДНД и неравномерность вращения делает правильный вывод, произошел пропуск или нет.Датчик устанавливается на правой(по ходу автомобиля) стойке и прикручивается под гайку крепления верхней опоры.

Исполнительные механизмы(ИМ)

1. Регулятор холостого хода(РХХ)


Регулятор холостого хода служит для поддержания установленных оборотов двигателя на холостом ходу за счет дозирования количества воздуха, подаваемого в двигатель при закрытом дросселе.РХХ расположен сбоку дросселя


и представляет собой шаговый двигатель с двумя обмотками.При подаче импульса на одну из них игла делает один шаг вперед, на другую — шаг назад.Через червячную передачу вращение двигателя преобразуется в поступательное движение штока.Конусная часть штока располагается в канале подачи воздуха для обеспечения регулировки холостого хода двигателя.Шток регулятора выдвигается или втягивается в зависимости от управляющего сигнала контроллера.Регулятор холостого хода регулирует частоту вращения коленчатого вала на режиме холостого хода, дозируя количество воздуха, подаваемого в обход закрытой дроссельной заслонки.В полностью выдвинутом положении (выдвинутое до упора положение соответствует "0" шагов), конусная часть штока перекрывает подачу воздуха в обход дроссельной заслонки.При открывании клапан обеспечивает расход воздуха, пропорциональный перемещению штока (количеству шагов) от своего седла.Полностью открытое положение клапана соответствует перемещению штока на 255 шагов.
Проверяется РХХ замером сопротивления обмоток.На выводах AB и CD.Сопротивление каждой обмотки должно быть в пределах 51 +\- 2 Ом.Но такая проверка не может полностью судить о пригодности регулятора.Из-за возможной механической проблемы.Проверять подвижность штока, прилагая к нему усили недопустимо, это может вывести его из строя.

2. Регулятор давления топлива(РДТ)


Регулятор давления расположен на рампе форсунок, служит для регулирования давления топлива в рампе, в зависимости от нагрузки на двигатель.При включенном зажигании, неработающем двигателе и работающем ЭБН регулятор поддерживает давление в топливной рампе в пределах от 2,8 до 3,2 кгс/см2, а излишки сливает в "обратку"(в системах с двигателем объемом 1,6 литра нет "обратки", РДТ находится в баке, на бензонасосе и поддерживает давление в топливной магистрали 3,8 кгс/см2).На ХХ давление может снижаться до 2,3 кгс/м2.

3. Клапан продувки адсорбера(КПА)


предназначен для продувки адсорбера — системы улавливания паров бензина автомобиля, оснащенного электронной системой управления двигателя, разработаны для норм токсичности ЕВРО — 3 и ЕВРО-2.Клапан управляется ЭБУ, путём подачи на электро клапан умравляющего сигнала частотой 32 гц разной длины, в зависимости от алгоритма заложенногов прошивке блока.
Проверить его работу можно на слух, подавая кратковремено +12 и массу на выводы клапана.Трубки, подводимые к клапану не должны иметь трещин и сообщаться с атмосферой.

4. Бензонасос
Модуль бензонасоса на автомобиле семейства ВАЗ-2110 погружного типа и расположен в баке.
Сам бензонасос турбинного типа. С его помощью в топливной системе создаётся давление не мение 2.8 кг\см, а излишки давления, через РДТ, стравливаются через "обратку" в бак(на новых системах с объёмом 1.6 литра, применяется бензонасос со встроеным регулятором давления.Слив излишков происходит прям в баке, а топливная рампа не имеет "обратки", а давление в системе 3.8кг\см).
Основными параметрами для контроля являются:Давление в "стенку"(не менее 5 атм.);Производительность(не мение 50-60 л\час) и ток в цепи электропитания бензонасоса(не более 6,5 А).Для измерения давления в системе применяется топливный манометр, который имеется не у всех.По-этому описание проверки излогать не целесообразно.
Так-же на модуле установлен ДУТ(датчик указателя топлива).Предстовляющий из себя простой реастат, который изменяет напряжение в зависимости от количества топлива в баке.

5. СО-потенциометр
СО-потенциометр представляет из себя переменный резистор. С помощью которого регулируется состав смеси на ХХ(обедняется или обогощается) для обеспечения экологических норм.Устанавливался на автомобили без неитрализатора.Распологался в салоне на боковом экране центральной консоли у ног водителя.В последствии был устранён, всвязи с появлением возможности регулировки с диагностического оборудования.

6. Форсунка
Форсунка представляет из себя электромагнитный клапан, управляемый ЭБУ.
С помощью форсунок происходит дозирование топлива, путём кратковременного открытия клапана.Форсунка устанавливается одним концом(со стороны распылителя) во впусконй коллектор, другим концом в рампу.
Форсунки бывают различных формфакторов и производителей.
Проверяются прозвонкой обмотки клапана, сопртивление должно быть в пределах 11-15 ом.

7. Модуль зажигания(МЗ)
Модуль зажигания сложный электротехнический прибор.
Который обеспечивает генерирование искрового разряда на свечах зажигания.Управляется ЭБУ.По составу содержит в себе две катушки зажигания и два коммутатора.Каждая катушка завязана на два цилиндра(1-4 и 2-3).То-есть, когда в первом цилиндре в конце такта сжатия происходит рабочий разряд, который воспламеняет рабочую смесь, то в четвёртом цилиндре происходит разрят, так называемой, "холостой" искры.Аналогичный процесс происходит и с вторым и третьим цилиндром.Это происходит из-за того, что вторичная обмотка, каждой из своих концов, соединина с выводом для ВВ провода.

И при возникновении индукции от протекающего тока по первичной обмотке, на выводах катушки генерируется ВВ напряжение разных потенциалов.
МЗ очень капризный прибор из-за своей технической сложности.И продиагностировать его, как говорят "на коленке" практический не возможно.Контроль МЗ производится на специальном стенде, где имитируются разные режимы работы двигателя.А также осциллографом, по осциллограммам первичного и вторичного напряжения.Косвенно судить о работе МЗ, можно подключив к в проводу разрядник и оценить качество искры.
Не допускается проверка искры, подключив свечу к ВВ проводу и приложив её к массе двигателя!Так-как таким образом не возможно обеспечить уверенное заземление свечи, что может привести к выходу из строя модуля.А так-же существует риск поражения электрическим током высокого напряжения!

8. Катушка зажигания(КЗ)
Четырёхвыводная катушка зажигания является аналогом МЗ, за исключением того, что из неё были удалены коммутаторы.Что привело к увеличению стабильности работы узла.Это было сопряжено с тем, что в конце 2004 года, на конвеер стали поставляться новые электронные блоки управления Бош 7.9.7 и Январь 7.2.Которые содержат в себе коммутаторы и силовые ключи.Методы проверки, такие же как у МЗ.
На двигателях 21124 устанавливаются индивидуальные катушки зажигания, которые устанавливаются непосредственно на свечу зажигания.В составе ЭБУ такой системы содержатся четыре комутатора и четыре силовых ключа.

ЭБУ расшифровывается как электронный блок управления. Это небольшая электронная плата, отвечающая за сбор и обработку различной информации о состоянии машины. Если двигатель можно назвать сердцем, то ЭБУ, без сомнения, мозг. Также это устройство называют «контроллером». Информация о скорости, температуре двигателя и снаружи, уровне кислорода и пр. поступает в ЭБУ от датчиков. Из него же исходят команды для системы зажигания, коробки передач (для автомата), ABS, топливного насоса, управления светом и других систем.

Как работает ЭБУ

Схема работы ЭБУ

Схема работы ЭБУ

Для того чтобы понять, что такое ЭБУ в автомобиле, для начала нужно разобраться с тем, как данная система работает. В первую очередь ЭБУ собирает данные с датчиков:

  • Температура мотора и окружающей среды,
  • Данные о подаче кислорода и топлива,
  • Датчик скорости,
  • Датчик холостого хода,
  • Данные от систем антизаноса, стабилизации, антиблокировочной системы, некоторых других систем безопасности,
  • Информация о состоянии коленвала (или коленвалов)
  • Информация о положении дроссельной заслонки, педали газа
  • Контроль количества охлаждающей жидкости, тормозной жидкости и самой тормозной системы
  • Датчик напряжения внутренней электросети автомобиля,
  • Информация из цепи ЭУР или о состоянии гидроусилителя.

Это минимальный набор данных, которые блок электронного управления получает для анализа постоянно. Чем выше классом машина, тем этот список все длиннее. Добавляются, например, данные о состоянии пневматической подвески у внедорожника и пр.

По мере анализа всей этой информации ЭБУ постоянно отдает команды для поддержания автомобиля в рабочем режиме. Фактически блок управления всегда держит под контролем:

  • Впрыск инжекторов,
  • Подача воздуха и всю система зажигания,
  • Управление газораспределением,
  • Состав выхлопных газов,
  • Управление автоматической КП
  • Поддержание нужного значения температуры,
  • Всю осветительную систему, внутреннюю и наружную,
  • Подогрев, кондиционер,
  • Стеклоподъемники и прочее.

Как выглядит ЭБУ

Электронный блок управления (со снятой крышкой)

Электронный блок управления (со снятой крышкой)

Это электронная плата, помещенная в небольшой корпус (алюминиевый или пластиковый). Материал оболочки зависит от места нахождения блока. Если он располагается в салоне, то обычно в пластиковом корпусе, а если под капотом машины – то в металлическом. Из контроллера наружу выходят пара разъемов под CAN шины. Иногда имеется дополнительный разъем для удобства диагностики и перепрошивки.

Внутри ЭБУ устроен как мини компьютер, плата блока управления состоит из запоминающих устройств, а именно:

  • ОЗУ – оперативной памяти для обработки промежуточных данных об автомобиле,
  • ППЗУ – постоянная память, хранит установки функций двигателя и прочее необходимое ПО.
  • ЭРПЗУ – предназначено для хранения временной информации: кодов блокировки и доступа, пробега, температуры в двигателе, расхода горючего и пр.

Функциональные микросхемы ЭБУ получают данные о состоянии и автомобиля, производят их анализ и отправляют текущие команды на исполняющие устройства. Контрольные составляющие ЭБУ – это модули, которые обнаруживают и анализируют ошибки. Они выдают ошибку на дисплей («Check Engine» или другое оповещение), или блокируют запуск мотора.

ЭБУ легко опознать по двум шлейфам, подсоединенным к нему. Если блок электронного управления расположен под капотом, то рядом с блоком предохранителей или с аккумулятором. Если он находится в салоне, то обычно под панелью, либо под задним диваном. Есть модели автомобилей, в которых блок электронного управления расположен даже в багажнике.

Неисправности и ремонт ЭБУ

Поврежденный чип на плате ЭБУ

Поврежденный чип на плате ЭБУ

ЭБУ – важная и, как правило, очень надежная часть автомобиля. Но можно однозначно говорить о его неисправности:

  • Если машина не запускается или плохо управляется,
  • Происходят различные блокировки (дверей, сцепления и пр.),
  • На дисплей постоянно выдаются ошибки,
  • Происходят сбои в работе двигателя.

Самая частая причина выхода из строя ЭБУ – короткое замыкание в бортовой электросети. Также поломка может случиться из-за аварии, перегрева, попадания на плату жидкостей (воды, антифриза), в результате коррозии.

Блок управления – весьма дорогой узел автомобиля. Его стоимость для «народных» иномарок составляет 300 — 500 долл. Прежде чем покупать новый блок, покажите старый хорошему эксперту. Если микросхема «выгорела» или корродировала лишь частично, наверняка (с вероятностью 80%) можно восстановить работоспособность и проездить на ней еще какое-то время.

Снять ЭБУ достаточно просто, для этого нужно:

  1. Отсоедините минусовую клемму аккумулятора,
  2. Отсоедините два входящих шлейфа,
  3. Открутите болты крепления.

Если ЭБУ размещается возле печки на передней панели, предварительно понадобится ее (панель) снять.

Видео об ЭБУ

Что такое ЧИП-тюнинг ЭБУ

ЧИП-тюнинг электронного блока управления

ЧИП-тюнинг электронного блока управления

Усовершенствование заводского программного обеспечения, то есть замену стандартной прошивки ЭБУ, называют ЧИП-тюнингом.

Ряд компаний предлагают ЧИП-тюнинг для увеличения мощности примерно на 10%, уменьшения расхода горючего, улучшения плавности хода машины и пр. Новая прошивка помогает «заточить» авто под определенное топливо. Всегда рекомендуется перепошивка ЭБУ, если вы сняли катализатор. На некоторых машинах имеется ограничение верхнего предела скорости, и с помощью ЧИП-тюнинга можно его успешно убрать.

Если вы решили сделать ЧИП-тюнинг, помните: новое ПО должно быть абсолютно адаптировано под вашу марку, либо должно быть оригинальным.

Одним из главных элементов современного автомобиля является ЭСУД – электронная система управления двигателем. Именно она обеспечивает работу двигателя в оптимальном режиме мощности и, потребления топлива, кроме того, на нее возложена функция управления многочисленными функциями и рабочими процессами, протекающими в автомобиле. В общем смысле ЭСУД представляет собой компьютер ДВС, в котором обрабатываются показания датчиков и в соответствии с ними подаются те или иные команды на прочие системы и агрегаты. Однако это определение слишком общее, поэтому для понимания сущности и роли данного элемента следует разобраться в тонкостях его работы.

Что такое ЭСУД в автомобиле

ЭСУД в автомобиле

Данная система объединяет в себе большое количество различных компонентов:

  • датчики и подсистемы, фиксирующие показания и рабочее состояние различных агрегатов двигателя;
  • передающие провода;
  • электронный блок управления – центральный элемент ЭСУД и своеобразный «мозг» автомобиля, в котором данные, получаемые с датчиков, обрабатываются и интерпретируются.

Необходимость внедрения электронной системы управления рабочими параметрами двигателя стала очевидной в процессе оптимизации процессов зажигания и впрыска – механическая регулировка и контроль не обеспечивали достаточной точности и эффективности, в результате чего КПД использовавшихся ранее ДВС был низким. На современных же моделях широко используются электронные контрольные модули, которые отвечают не только за вышеназванные параметры, но и за многие другие: впуск топливной смеси в цилиндры, охлаждение двигателя, выпуск отработанных газов, улавливание паров бензина и т.д.

Как правило, ЭСУД объединяется в единый комплекс с другими системами автомобиля, включая блок управления КПП, рулевой электроуситель, ABS, систему активной безопасности и т.д.

Из чего состоит ЭСУД

В состав электронной системы управления двигателем входят самые разные компоненты, в совокупности обеспечивающие комплексную регулировку рабочих параметров ДВС. К основным ее элементам относятся следующие:

  • электронный контроллер – основная часть всей системы, именно здесь анализируются показания датчиков, проводятся вычисления и формируются команды исполнительным агрегатам и подсистемам; – фиксирует количество поступающего в цилиндры воздуха и в соответствии с этими данными изменяет объем подаваемого топлива;
  • датчик скорости – фиксирует текущую скорость и преобразует полученное значение в электронный сигнал; – определяет количество кислорода в выхлопных газах до и после стадии нейтрализации;
  • датчик неровной дороги – важный элемент современных электронных подвесок, анализирует силу вибрации кузова и преобразует полученное значение в сигнал;
  • датчик фаз – подает на контроллер сигнал при поднятии первого поршня в высшую точку на такте сжатия; ; – фиксирует величину угла при повороте вала;
  • датчик дроссельной заслонки – определяет угол открытия заслонки; – определяет интенсивность детонационных процессов в двигателе по уровню поступающих шумов;
  • модуль зажигания – в нем аккумулируется энергия, необходимая для поджигания топливовоздушной смеси, а также обеспечивает требуемое напряжение свечей;
  • форсунки – отвечают за распределение топлива между цилиндрами;
  • регулятор топливного давления – поддерживает требуемое давление при подаче топлива;
  • модуль бензонасоса – отвечает за избыточное давление в питающей двигатель системе; – необходим для улавливания бензиновых испарений;
  • нейтрализатор – уменьшает токсичность выхлопа двигателя за счет каталитических реакций;
  • датчик холостого хода – регулирует питание двигателя при холостой работе;
  • диагностический сигнал – лампа на приборной панели, загорание которой свидетельствует о той или иной неисправности в работе двигателя;
  • диагностический интерфейс – позволяет подключать к ЭСУД специализированное диагностическое оборудование.

Как видно, электронная система управления двигателем включает в себя внушительное количество самых разных датчиков и регуляторов. При этом все поступающие с них данные анализируются в едином электронном блоке, который представляет собой полноценный микрокомпьютер.

Какие задачи выполняет ЭСУД

Большое количество компонентов, входящий в состав электронной системы управления, обусловливает и широкое разнообразие выполняемых ей задач. По большому счету, она полностью управляет работой двигателя, оперативно изменяет его параметры и фиксирует его состояние. К наиболее важным функциям ЭСУД можно отнести следующие:

  • расчет оптимального объема топлива и момента его подачи в камеру сгорания;
  • определение момента генерации искры, воспламеняющей ТВС;
  • регулировка угла опережения зажигания;
  • контроль положения коленвала;
  • самодиагностика системы, всех ее подсистем и исполнительных механизмов.

Все элементы ЭСУД работают в комплексе, что позволяет достигать оптимальной производительности мотора. Если в ходе диагностики выявляются какие-либо неисправности, то на экран либо приборную панель выводится соответствующее уведомление. Если обнаруженные нарушения создают угрозу двигателю и автомобилю в целом, то система управления отдает команду на его отключение. Если поломка не такая серьезная, то можно временно продолжать движение – но в любом случае нужно как можно скорее обратиться на автосервис.

Для определения действительной неисправности необходимо использовать специальное диагностическое оборудование. При подключении к соответствующему разъему оно считает информацию, расшифрует код ошибки и предоставит точные сведения о выявленной неполадке.

В этом выражается еще одна важная функция ЭСУД – сокращение затрат времени и денег на ремонтные работы. Работникам СТО будет достаточно только получить код ошибки, после чего можно сразу же приступать к устранению поломки.

Автор статьи

Куприянов Денис Юрьевич

Куприянов Денис Юрьевич

Юрист частного права

Страница автора

Читайте также: