Какой признак положен в основу классификации сосудов

Обновлено: 25.04.2024

Сосуды микроциркуляторного русла. Артериолы. Прекапилляры. Посткапилляры. Венулы.

По мере уменьшения калибра артерий все оболочки их стенок становятся тоньше. Артерии постепенно переходят в артериолы, с которых начинается микроциркуляторное сосудистое русло (МЦР). Через стенки его сосудов осуществляется обмен веществ между кровью и тканями, поэтому микроциркуляторное русло именуется обменным звеном сосудистой системы. Постоянно происходящий обмен воды, ионов, микро- и макромолекул между кровью, тканевой средой и лимфой, представляет собой процесс микроциркуляции, от состояния которого зависит поддержание постоянства внутритканевого и внутриорганного гомеостаза. В составе МЦР различают артериолы, прекапилляры (прекапиллярные артериолы), гемокапилляры, посткапилляры (посткапиллярные венулы) и венулы.

Артериолы — мелкие сосуды диаметром 50-100 мкм, постепенно переходящие в капилляры. Основная функция артериол — регулирование притока крови в основное обменное звено МЦР — гемокапилляры. В их стенке еще сохраняются все три оболочки, свойственные более крупным сосудам, хотя они и становятся очень тонкими. Внутренний просвет артериол выстлан эндотелием, под которым лежат единичные клетки подэндотелиального слоя и тонкая внутренняя эластическая мембрана. В средней оболочке спиралевидно располагаются гладкие миоциты. Они образуют всего 1-2 слоя. Гладкие мышечные клетки имеют непосредственный контакт с эндотелиоцитами, благодаря наличию перфораций во внутренней эластической мембране и в базальной мембране эндотелия. Эндотелио-миоцитарные контакты обеспечивают передачу сигналов от эндотелиоцитов, воспринимающих изменение концентраций биологически активных соединений, регулирующих тонус артериол, на гладкомышечные клетки. Характерным для артериол является также наличие миомиоцитарных контактов, благодаря которым артериолы выполняют свою роль "кранов сосудистой системы" (Сеченов И.М.). Артериолы обладают выраженной сократительной активностью, называемой вазомоцией. Наружная оболочка артериол чрезвычайно тонка и сливается с окружающей соединительной тканью.

строение артериол

Прекапилляры (прекапиллярные артериолы) — тонкие микрососуды (диаметром около 15 мкм), отходящие от артериол и переходящие в гемокапилляры. Их стенка состоит из эндотелия, лежащего на базальной мембране, гладкомышечных клеток, расположенных поодиночке и наружных адвентициальных клеток. В местах отхождения от прекапиллярных артериол кровеносных капилляров имеются гладкомышечные сфинктеры. Последние регулируют приток крови к отдельным группам гемокапилляров и при отсутствии выраженной функциональной нагрузки на орган большая часть прекапиллярных сфинктеров закрыта. В области сфинктеров гладкие миоциты формируют несколько циркулярных слоев. Эндотелиоциты имеют большое количество хеморецепторов и образуют множество контактов с миоцитами. Эти особенности строения позволяют прекапиллярным сфинктерам реагировать на действие биологически активных соединений и изменять приток крови в гемокапилляры.

Стенка кровеносных капилляров состоит из клеток — эндотелиоцитов и перицитов, а также неклеточного компонента — базальной мембраны. Снаружи капилляры окружены сетью ретикулярных волокон. Внутренняя выстилка гемокапилляров образована однослойным пластом плоских эндотелиоцитов. Стенку капилляра в поперечнике образуют от одной до четырех клеток. Эндотелиоциты имеют полигональную форму, содержат, как правило, одно ядро и все органеллы. Наиболее характерными ультраструктурами их цитоплазмы являются пиноцитозные везикулы. Последних особенно много в тонких периферических (маргинальных) частях клеток. Пиноцитозные везикулы связаны с плазмолеммой наружной (люминальной) и внутренней (аблюминальной) поверхностей эндотелиоцитов. Их образование отражает процесс трансэндотелиального переноса веществ. При слиянии пиноцитозных пузырьков формируются сплошные трансэндотелиальные канальцы. Плазмолемма люминальной поверхности эндотелиальных клеток покрыта гликокаликсом, выполняющим функцию адсорбции и активного поглощения из крови продуктов обмена веществ и метаболитов. Здесь эндотелиальные клетки образуют микровыросты, численность которых отражает степень функциональной транспортной активности гемокапилляров. В эндотелии гемокапилляров ряда органов наблюдаются "отверстия" (фенестры) диаметром около 50-65 нм, закрытые диафрагмой толщиной 4-6 нм. Их присутствие облегчает течение обменных процессов.

Эндотелиальные клетки обладают динамическим сцеплением и непрерывно скользят одна относительно другой, образуя интердигитации, щелевые и плотные контакты. Между эндотелиоцитами в гемокапиллярах некоторых органов обнаруживаются щелевидные поры и прерывистая базальная мембрана. Эти межклеточные щели служат еще одним из путей транспорта веществ между кровью и тканями.

Снаружи от эндотелия располагается базальная мембрана толщиной 25-35 нм. Она состоит из тонких фибрилл, погруженных в гомогенный липопротеиновый матрикс. Базальная мембрана в отдельных участках по длиннику гемокапилляра расщепляется на два листка, между которыми лежат перициты. Они оказываются как бы "замурованными" в базальной мембране. Полагают, что деятельность и изменение диаметра кровеносных капилляров регулируется, благодаря способности перицитов набухать и отбухать. Аналогом наружной оболочки сосудов в гемокапиллярах служат адвентициальные (периваскулярные) клетки вместе с преколлагеновыми фибриллами и аморфным веществом.

Для гемокапилляров характерна органная специфичность строения. В этой связи различают три типа капилляров: 1) непрерывные, или капилляры соматического типа, — располагаются в мозгу, мышцах, коже; 2) фенестрированные, или капилляры висцерального типа, — располагаются в эндокринных органах, почках, желудочно-кишечном тракте; 3) прерывистые, или капилляры синусоидного типа, — располагаются в селезенке, печени.

В гемокапиллярах соматического типа эндотелиоциты соединены друг с другом с помощью плотных контактов и образуют сплошную выстилку. Базальная мембрана их также непрерывная. Присутствие подобных капилляров со сплошной эндотелиальной выстилкой в мозгу, например, необходимо для надежности гемато-энцефалического барьера. Гемо-капилляры висцерального типа выстланы эндотелиоцитами с фенестрами. Базальная мембрана при этом непрерывная. Капилляры этого типа характерны для органов, в которых обменно-метаболические отношения с кровью более тесные — эндокринные железы выделяют в кровь свои гормоны, в почках из крови фильтруются шлаки, в желудочно-кишечном тракте в кровь и лимфу всасываются продукты расщепления пищи. В прерывистых (синусоидных) гемокапиллярах между эндотелиоцитами имеются щели, или поры. Базальная мембрана в этих участках отсутствует. Такие гемокапилляры присутствуют в органах кроветворения (через поры в их стенке в кровь поступают созревшие форменные элементы крови), печени, которая выполняет множество метаболических функций и клетки которой "нуждаются" в максимально тесном контакте с кровью.

Количество гемокапилляров в разных органах неодинаково: на поперечном срезе в мышце, например, на 1 мм2 площади насчитывается до 400 капилляров, тогда как в коже — всего 40. В обычных физиологических условиях до 50 % гемокапилляров являются нефункционирующими. Количество "открытых" капилляров зависит от интенсивности работы органа. Кровь протекает через капилляры со скоростью 0,5 мм/с под давлением 20-40 мм рт. ст.

Посткапилляры, или посткапиллярные венулы, — это сосуды диаметром около 12-30 мкм, образующиеся при слиянии нескольких капилляров. Посткапилляры по сравнению с капиллярами имеют больший диаметр и в составе стенки чаще встречаются перициты. Эндотелий фенестрированного типа. На уровне посткапилляров происходят также активные обменные процессы и осуществляется миграция лейкоцитов.

Венулы образуются при слиянии посткапилляров. Начальным звеном венулярного отдела МЦР являются собирательные венулы. Они имеют диаметр около 30-50 мкм и не содержат в структуре стенки гладких миоцитов. Собирательные венулы продолжаются в мышечные, диаметр которых достигает 50-100 мкм. В этих венулах имеются гладкомышечные клетки (численность последних увеличивается по мере удаления от гемокапилляров), которые ориентированы чаще вдоль сосуда. В мышечных венулах восстанавливается четкая трехслойная структура стенки. В отличие от артериол, в мышечных венулах нет эластической мембраны, а форма эндотелиоцитов более округлая. Венулы отводят кровь из капилляров, выполняя отточно-дренажную функцию, выполняют вместе с венами депонирующую (емкостную) функцию. Сокращение продольно ориентированных гладких миоцитов венул создает некоторое отрицательное давление в их просвете, способствующее "присасыванию" крови из посткапилляров. По венозной системе вместе с кровью из органов и тканей удаляются продукты обмена веществ.

Гемодинамические условия в венулах и венах существенно отличаются от таковых в артериях и артериолах в связи с тем, что кровь в венозном отделе течет с небольшой скоростью (1-2 мм/с) и при низком давлении (около 10 мм рт. ст.).

В составе микроциркуляторного русла существуют также артериоло-венулярные анастомозы, или соустья, обеспечивающие прямой, в обход капилляров, переход крови из артериол в венулы. Путь кровотока через анастомозы короче транскапиллярного, поэтому анастомозы называют шунтами. Различают артериоло-венулярные анастомозы гломусного типа и типа замыкающих артерий. Анастомозы гломусного типа регулируют свой просвет посредством набухания и отбухания эпителиоидных гломусных Е-клеток, расположенных в средней оболочке соединяющего сосуда, образующего нередко клубочек (гломус). Анастомозы типа замыкающих артерий содержат скопления гладких мышечных клеток во внутренней оболочке. Сокращение этих миоцитов и их выбухание в просвет в виде валика или подушечки могут уменьшить или полностью закрыть просвет анастомоза. Артериоло-венулярные анастомозы регулируют местный периферический кровоток, участвуют в перераспределении крови, терморегуляции, регуляции давления крови. Различают еще атипические анастомозы (полушунты), в которых соединяющий артериолу и венулу сосуд представлен коротким гемокапилляром. По шунтам протекает чистая артериальная кровь, а полушунты, будучи гемокапиллярами, передают в венулу смешанную кровь.

Информация на сайте подлежит консультации лечащим врачом и не заменяет очной консультации с ним.
См. подробнее в пользовательском соглашении.

Функциональная классификация сосудов (по Б. И. Ткаченко в модификации В. Г. Афанасьева) состоит из:

1. Амортизирующие сосуды аорта, легочная артерия и их крупные ветви, т.е. сосуды эластического типа.

Специфическая функция этих сосудов - поддержание движу­щей силы кровотока в диастолу желудочков сердца. Здесь сгла-

живается перепад давления между систолой, диастолой и покоем желудочков за счет эластических свойств стенки сосудов. В ре­зультате в период покоя давление в аорте поддерживается на уров­не 80 мм рт. ст., что стабилизирует движущую силу, при этом эла­стические волокна стенок сосудов отдают накопленную во время систолы потенциальную энергию сердца и обеспечивают непре­рывность тока крови и давление по ходу сосудистого русла. Элас­тичность аорты и легочной артерии смягчает также гидравличе­ский удар крови во время систолы желудочков. Изгиб аорты повышает эффективность перемешивания крови (основное пере­мешивание, создание однородности транспортной среды происхо­дит в сердце).

2. Сосуды распределения - средние и мелкие артерии мышеч­ного типа регионов и органов; их функция - распределение потока крови по всем органам и тканям организма. Вклад этих сосудов в общее сосудистое сопротивление небольшой и составляет 10-20%.

3. Сосуды сопротивления. К ним относят: артерии диамет­ром менее 100 мкм, артериолы, прекапиллярные сфинктеры, сфин­ктеры магистральных капилляров. На долю этих сосудов приходит­ся около 50-60% общего сопротивления кровотоку, с чем и связано их название. Разнонаправленные изменения тонуса сосудов сопро­тивления разных регионов обеспечивают перераспределение объем­ного кровотока между регионами. В регионе или органе они пере­распределяют кровоток между работающими и неработающими микрорегионами, т.е. управляют микроциркуляцией. Наконец, со­суды сопротивления микрорегиона распределяют кровоток между обменной и шунтовой цепями, определяют количество функциони­рующих капилляров. Так, включение в работу одной артериолы обеспечивает кровоток в 100 капиллярах.

4. Обменные сосуды - это капилляры. Частично транспорт веществ происходит также в артериолах и венулах. Через стенку артериол легко диффундирует кислород (в частности, этот путь играет важную роль в снабжении кислородом нейронов мозга), а через люки венул (межклеточные поры диаметром 10-20 нм) осу­ществляется диффузия из крови белковых молекул, которые в даль­нейшем попадают в лимфу.

5. Шунтирующие сосуды. К ним относят артериоло-венуляр-ные анастомозы. Их функция - шунтирование кровотока. Истин­ные анатомические шунты (артериоло-венулярные анастомозы) есть не во всех органах. Наиболее типичны эти шунты для кожи: при необходимости уменьшить теплоотдачу кровоток по системе капилляров прекращается и кровь (тепло) сбрасывается по шун­там из артериальной системы в венозную.

6. Емкостные (аккумулирующие) сосуды — это посткапил­лярные венулы, венулы, мелкие вены, венозные сплетения и спе­циализированные образования - синусоиды селезенки. Их общая емкость составляет около 50% всего объема крови, содержащейся в сердечно-сосудистой системе. Функции этих сосудов связаны со способностью изменять свою емкость. В состоянии покоя до 50% объема крови функционально выключено из кровообращения.

7. Сосуды возврата крови в сердце - это средние, крупные и полые вены, выполняющие роль коллекторов, через которые обес-

, печиваются региональный отток крови, возврат ее к сердцу. Емкость этого отдела венозного русла составляет около 18% и в физиоло­гических условиях изменяется мало (на величину менее 1/5 от исходной емкости).

Состоят из трех оболочек: внутренней,средней (мышечной) и наружной (адвентициальной). Кровеносные сосуды делятся на:

• артерии, несущие кровь от сердца;

• вены, по которым движется кровь к сердцу;

• сосуды микроциркуляторного русла.

Классификация артерий.

По диаметру артерии делятся на: малого, среднего и крупного калибра.

По количественному соотношению в средней оболочке мышечного и эластического компонентов подразделяются на артерии эластического, мышечного и смешанного типов.

Артерии эластического типа(аорта и легочная артерия) построены по общему принципу строения сосудов и состоят из внутренней, средней и наружной оболочек.

Внутренняя оболочка достаточно толстая и образована тремя слоями: эндотелиальным, подэндотелиальным и слоем эластических волокон. В эндотелиальном слое клетки крупные, лежат на базальной мембране. Подэндотелиальный слой образован рыхлой волокнистой неоформленной соединительной тканью. На границе со средней оболочкой находится сплетение эластических волокон, состоящее из внутреннего циркулярного и наружного продольного слоев. Средняя оболочка состоит в основном из эластических элементов. Они образуют у взрослого человека 50—70 окончатых мембран. Между мембранами находится рыхлая волокнистая неоформленная соединительная ткань Наружная адвентициальная оболочка относительно тонкая, состоит из рыхлой волокнистой неоформленной соединительной ткани, содержит толстые эластические волокна и пучки коллагеновых волокон, а также сосуды сосудов и нервы сосудов.

Артерии мышечно-эластического типа

Примером артерии смешанного типа является подмышечная и сонная артерии. Так как в этих артериях постепенно происходит снижение пульсовой волны, то наряду с эластическим компонентом они имеют хорошо развитый мышечный компонент для поддержания этой волны. Толщина стенки по сравнению с диаметром просвета у этих артерий значительной увеличивается.

В средней оболочке хорошо развиты как мышечный, так и эластический компоненты. Эластические элементы представлены отдельными волокнами, формирующими сеть и лежащими между ними слоями гладких миоцитов, идущими спирально.

Артерии мышечного типа

К этим артериям относятся артерии малого и среднего калибра, лежащие вблизи органов и внутриорганно. В этих сосудах сила пульсовой волны существенно снижается, и возникает необходимость создания дополнительных условий по продвижению крови, поэтому в средней оболочке преобладает мышечный компонент. Диаметр этих артерий может уменьшаться за счет сокращения и увеличиваться за счет расслабления гладких миоцитов. Толщина стенки этих артерий существенно превышает диаметр просвета. Такие сосуды создают сопротивление движущей крови.

Внутренняя оболочка имеет небольшую толщину и состоит из эндотелиального, подэндотелиального слоев и внутренней эластической мембраны. Их строение в целом такое же, как в артериях смешанного типа, причем внутренняя эластическая мембрана состоит из одного слоя эластических клеток.

Средняя оболочка состоит из гладких миоцитов, расположенных по пологой спирали, и рыхлой сети эластических волокон, также лежащих спирально.

Наружная оболочка образована наружной эластической мембраной и слоем рыхлой волокнистой неоформленной соединительной тканью. В ней содержатся кровеносные сосуды сосудов, симпатические и парасимпатические нервные сплетения.

Классификация вен:

- безмышечного типа относятся вены плаценты, костей, мягкой мозговой оболочки, сетчатки глаза, ногтевого ложа, трабекул селезенки, центральные вены печени. Отсутствие в них мышечной оболочки объясняется тем, что кровь здесь движется под действием силы тяжести, и ее движение не регулируется мышечными элементами. Построены эти вены из внутренней оболочки с эндотелием и подэндотелиальным слоем и наружной оболочки из рыхлой волокнистой неоформленной соединительной ткани. Внутренняя и наружная эластические мембраны, так же как и средняя оболочка, отсутствуют.

- мышечного типаподразделяются на

а)вены со слабым развитием мышечных элементов ( Мелкие, средние и крупные вены верхней части тела. Мышечная оболочка содержит небольшое количество гладких миоцитов, которые могут формировать отдельные скопления, удаленные друг от друга.)

б) вены со средним развитием мышечных элементов (внутренняя оболочка состоит из эндотелиального и подэндотелиального слоев и формирует клапаны)

в) вены с сильным развитием мышечных элементов (вены нижней части тела — нижняя полая вена, бедренная вена. Для этих вен характерно развитие мышечных элементов во всех трех оболочках.)

Классификация системы кровообращения. Функциональные классификации системы кровообращения ( Фолкова, Ткаченко).

Распространено и обосновано деление сердечно-сосудистой системы по уровню кровяного давления: область высокого и область низкого давления. К области высокого давления относят левый желудочек сердца, артерии крупного, среднего и малого калибра, артериолы; к области низкого давления — остальные отделы системы (от капилляров до левого предсердия).

В функциональной классификации шведского физиолога Б. Фолкова предусмотрено деление системы кровообращения на «последовательно соединенные звенья».

1. Сердце — насос, ритмически выбрасывающий кровь в сосуды.

2. Упруго-растяжимые сосуды, которые превращают периодичный выброс крови из сердца в равномерный кровоток (аорта с ее отделами, легочная артерия).

3. Резистивные сосуды (сосуды сопротивления) — прекапиллярный (в основном артериолы) и посткапиллярный отделы (венулы), которые вместе создают общее сопротивление кровотоку в сосудах органов.

4. Прекапиллярные сфинктеры — специализированный отдел мельчайших артериальных сосудов, сокращение гладкомышечных клеток этих сфинктеров может приводить к перекрытию просвета мелких сосудов. Эти сосуды регулируют объем кровотока в капиллярном русле.

5. Обменные сосуды, или истинные капилляры, где кровь контактирует с тканью благодаря огромным поверхностям капиллярного ложа. Здесь реализуется основная функция сердечно-сосудистой системы — обмен между кровью и тканями.

6. Шунтирующие сосуды (артериовенозные анастомозы), наличие которых доказано не для всех тканей.

7. Емкостные сосуды, в которых изменения просвета, даже столь небольшие, что не оказывают существенного влияния на общее сопротивление, вызывают выраженные изменения распределения крови и величины притока ее к сердцу (венозный отдел системы).

Классификация системы кровообращения. Функциональные классификации системы кровообращения ( Фолкова, Ткаченко).

Однако разделение на «резистивные» и «емкостные» сосуды весьма условно, поскольку сопротивлением обладают как артериальные, так и венозные сосуды, хотя в количественном плане эта функция различна для указанных отделов. С другой стороны, емкостью обладают как венозные сосуды, так и артериальные. Весьма расплывчатым является и понятие «емкостные сосуды», поскольку одни авторы относят к ним все венозное ложе, другие — только венулы и мелкие вены. Неудачно выделены в классификации и «прекапиллярные» сфинктеры, поскольку в венозном русле также существуют сосуды с расположением гладкомышечных волокон типа сфинктеров или запирательных образований.

Функциональное назначение различных отделов сердечно-сосудистой системы отражает следующая классификация (Б. И. Ткаченко):

1. Генератор давления и расхода крови — сердце, подающее кровь в аорту и легочную артерию во время систолы.

2. Сосуды высокого давления — аорта и крупные артериальные сосуды, в которых поддерживается характерный для индивидуума уровень кровяного давления.

3. Сосуды — стабилизаторы давления — мелкие артерии и артериолы, которые путем сопротивления кровотоку и во взаимоотношении с сердечным выбросом поддерживают оптимальный для системы уровень артериального давления.

4. Распределители капиллярного кровотока — терминальные сосуды, глад-комышечные образования которых при сокращении прекращают кровоток в капилляре или возобновляют его (при расслаблении), обеспечивая необходимое в данной ситуации число функционирующих и нефункционирующих капилляров.

5. Обменные сосуды — капилляры и частично посткапиллярные участки венул, функция которых состоит в обеспечении обмена между кровью и тканями.

6. Аккумулирующие сосуды — венулы и мелкие вены, активные или пассивные изменения просвета которых ведут к накоплению крови (с возможностью ее последующего использования) или к экстренному выбросу ее в циркуляцию. Функция этих сосудов в основном емкостная, но они обладают и резистивной функцией, хотя и намного меньшей, чем стабилизаторы давления.

7. Сосуды возврата крови — крупные венозные коллекторы и полые вены, через которые обеспечивается подача крови к сердцу.

8. Шунтирующие сосуды — различного типа анастомозы, соединяющие между собой артериолы и венулы и обеспечивающие ненутритивный кровоток.

9. Резорбтивные сосуды — лимфатический отдел системы кровообращения, в котором главная функция лимфатических капилляров состоит в резорбции из тканей белков и жидкости, а лимфатических сосудов — в транспортировке резорбированного материала обратно в кровь.

Информация на сайте подлежит консультации лечащим врачом и не заменяет очной консультации с ним.
См. подробнее в пользовательском соглашении.

Существует несколько классификаций кровеносных сосудов по морфологическим и функциональным признакам. Традиционно разделение на большой и малый круги кровообращения с разделением функций для каждого из них.

Естественно выделение венозного, артериального и капиллярного русла, выделение зон макроциркуляции ( сердце, крупные и мелкие артерии, крупные и мелкие вены ) и микроциркуляции ( артериолы, прек пиллярные артериолы, капилляры, посткапиллярные венулы, венулы, артериоло-венулярные анастамозы). Распространено деление на области высокого давления ( левый желудочек – артериолы) и низкого ( капилляры – полые вены ).

В настоящее время принята функционально-морфологическая классификация сердечно-сосудистой системы (рис. 59).


  1. Генератор давления и расхода – сердце, подающее кровь в аорту и легочной ствол. Содержит 7% от общего объема крови.
  2. Сосуды высокого давления – аорта и крупные артерии- об- разуют компрессионную камеру, функция которой состоит в обеспечении непрерывного тока крови в фазу диастолы. В этих сосудах выражены эластические элементы. В систолу они растягиваются, депонируя некоторый объем крови. В диастолу они, благодаря эластичности, уменьшаются в объеме и выбрасывают депонированный объем крови в артериальное русло. Содержат 15% от общего объема крови.
  3. Сосуды стабилизаторы давления – мелкие артерии и артериолы. Для этих сосудов варажена резистивная функция. В стенке выражен гладкомышечный слой. Они создают сопротивление кровотоку, поддерживая высокий уровень артериального давления. Тонус сосудов имеет миогенную природу и регулируется рефлекторным и гормональным звеньями регуляции. Содержат 3% от общего объема крови.
  4. Распределители капиллярного кровотока – прекапиллярные артериолы и прекапиллярные сфинктеры. Для них выражена резистивная функция. При увеличении тонуса этих сосудов кровоток уменьшается, вплоть до полного прекращения ( в состоянии покоя функционируют лишь 30% капилляров ). Основная функция состоит в регуляции регионарного кровотока и перераспределении крови в сосудистом русле.
  5. Обменные сосуды – капилляры, посткапиллярные венулы. Сосудистая стенка хорошо проницаема для водорастворимых веществ. Их функция состоит в обеспечении обмена с тканями. Содержат 7% от общего объема крови.
  6. Аккумулирующие сосуды – венулы и мелкие вены. Гладко- мышечная стенка выражена хуже. Обладают большой эластичностью. По отношению к сопротивлению кровотоку они выполняют емкостную функцию. Небольшое повышение давления вызывает существенное изменение их объема. При этом они депонируют значительный объем крови. Их сужение вызывает возвращение значительного количества крови в циркуляцию. Содержат 12% от общего объема крови.
  7. Сосуды возврата – вены, крупные вены и полые вены. Содержат 63% от общего объема крови.
  8. Шунтирующие сосуды – различного типа анастамозы (артерио-венозные, артериоло-венулярные). Это сосуды мышечного типа. Регулируют регионарный кровоток.
  9. Резорбтивные сосуды – лимфатические сосуды. Основная функция состоит в резорбции из тканей белка и жидкости, обратном транспорте в кровь.

В сердце находится около 7% крови, сосуды высокого давления содержат около 15% крови, артериолы – 3%, капилляры – 7%, венулы – 12%, сосуды большого объема ( вены, полые вены ) – 63% крови. Большой круг кровообращения содержит 84% крови, малый – 16%.

Автор статьи

Куприянов Денис Юрьевич

Куприянов Денис Юрьевич

Юрист частного права

Страница автора

Читайте также: