Какие системы используются на судах кроме систем комфортного кондиционирования воздуха

Обновлено: 18.04.2024

Они предназначены для создания и поддержания в судовых помещениях необходимых параметров воздушной среды.

Системы отопления обеспечивают обогрев судовых помещений в холодное время года. На судах применяют паровые, водяные и воздушные системы отопления, а также отопление с помощью электрогрелок, питаемых от судовой электросети.

Схемы системы парового отопления: однопроводная и двухпроводная

Систему парового отопления применяют в машинных отделениях и мастерских, санитарно-бытовых и санитарно-гигиенических помещениях, кладовых, реже — в жилых, общественных и служебных помещениях, за исключением помещений, имеющих оборудование и приборы, которые выходят из строя под действием пара в случае протечек (штурманская и радиорубки, трансляционная, гирокомпасная, музыкальные салоны, а также помещения, отделанные ценными породами дерева). Для парового отопления используют сухой насыщенный пар под давлением до 0,3 МПа (3 кгс/см 2 ) от главных, вспомогательных или утилизационных котлов. Система состоит из парораспределительной станции, размещаемой в МКО, специальных выгородках или нишах, тамбурах и т. п.; грелок и трубопроводов. Редукционный и предохранительный клапаны сохраняют заданное давление пара и предотвращают его повышение путем стравливания излишнего пара в атмосферу.

Различают однопроводную и двухпроводную системы парового отопления. При однопроводной системе (рис. 8.22, а) грелки включаются последовательно одна за другой, так, что каждая последующая питается смесью пара и конденсата, образовавшегося в предыдущей грелке. При двухпроводной системе (рис. 8.22, б) все грелки включаются параллельно друг другу между магистралью свежего пара и магистралью конденсационной воды. Конденсационная вода с полностью сконденсированными в конденсационном горшке остатками пара поступает в теплый ящик, а оттуда — в котел. Двухпроводная система эффективнее и надежнее однопроводной, но сложнее и на 25—30 % тяжелее.

При прокладке парового отопления помещения одного района судна с примерно равными теплопотерями объединяют в группы. При этом в каждую группу грелок пар поступает через редукционный клапан от магистрали свежего пара. Парораспределительная станция обслуживает не только систему парового отопления, но и хозяйственный паропровод, подающий пар в прачечные, камбуз, сушилки, к воздухоподогревателям системы воздушного отопления и кондиционирования воздуха (в хозяйственный паропровод подается пар под давлением 0,5 МПа).

Грелки систем парового и водяного отопления

В качестве отопительных приборов в системе парового отопления применяют радиаторы и грелки ребристого типа (рис. 8.23).

Трубопровод изготовляют из стальных или медных труб: магистральный — диаметром до 80 мм, отростки к отопительным приборам — диаметром 10—25 мм.

К недостаткам системы парового отопления следует отнести:

  • шум при подаче пара
  • невозможность получить стабильный тепловой режим, что вредно отражается на самочувствии людей
  • пригорание пыли на грелках из-за высокой температуры пара
  • сухость воздуха в обогреваемом помещении

Система водяного отопления, использующая в качестве теплоносителя воду, нагретую до 70—95°, по устройству очень похожа на систему парового отопления; в ней лишь отсутствуют приборы и арматура, имеющие «паровую» специфику (конденсационные горшки, сепараторы, редукционные и предохранительные клапаны). Горячую воду получают в водоподогревателе и подают по напорному трубопроводу в грелки и радиаторы такого же типа, как и для парового отопления; отдав тепло, вода возвращается в водоподогреватель. Циркуляция воды в системе обеспечивается специальным циркуляционным насосом (принудительная циркуляция) или благодаря разности давлений горячей и отработавшей воды (естественная циркуляция).

Системы водяного отопления бывают:

Так как под влиянием температуры изменяется объем воды, к напорной магистрали водяного отопления подключают расширительный бак. Если этот бак сообщается с атмосферой, систему называют открытой, если не сообщается, — закрытой. На большинстве судов применяют открытую систему, причем расширительный бак размещают возможно выше. Закрытая система используется только на небольших судах и катерах.

Трубопровод системы водяного отопления монтируют из стальных водогазопроводных труб диаметром 20—80 мм.

Водяное отопление имеет ряд преимуществ перед паровым:

  • бесшумность
  • гигиеничность
  • стабильность теплового режима
  • безопасность

Но оно более громоздко, тяжелее и ненадежно в условиях низких температур (возможно замерзание воды в трубопроводах).

Система воздушного отопления основана на обогреве помещений теплым воздухом. В настоящее время ее совмещают с системой вентиляции или с системой кондиционирования воздуха и как самостоятельную на судах не применяют.

Система вентиляции призвана поддерживать чистый, свежий воздух в жилых, служебных и общественных помещениях, в грузовых трюмах и танках, в провизионных кладовых, удалять скопление газов из коффердамов, аккумуляторных и т. д. Подаваемый в помещения наружный воздух специальной обработке не подвергается.

Система вентиляции подразделяется на общесудовую и вентиляцию различных помещений и постов . Различают:

  • естественную вентиляцию
  • искусственную вентиляцию

Вентиляционные дефлекторы

При естественной вентиляции движение воздуха вызывается разностью температур или ветром, который, воздействуя на специальные вентиляционные головки — дефлекторы (рис. 8.24), втягивает или вытягивает воздух из вентилируемого помещения. На современных судах естественную вентиляцию почти не применяют. В качестве искусственных побудителей движения воздуха используют центробежные и осевые вентиляторы с электро- или турбоприводом. В помещениях с загрязненным воздухом — в курительных, камбузах, изоляторах, санузлах, аккумуляторных — применяют вытяжную вентиляцию. Помещения, в которых всегда должен быть чистый воздух — каюты, салоны, посты, медблок, — оборудуют вдувной вентиляцией. Для обеспечения устойчивого притока воздуха используют комбинированную систему, т. е. в одном и том же помещении одновременно оборудуют и вдувную и вытяжную вентиляции, которые позволяют удалять загрязненный воздух и предотвращать распространение запахов по судну. Грузовые трюмы иногда оборудуют естественной вентиляцией, при этом вдувные дефлекторы устанавливают у кормовых переборок, а вытяжные — у носовых. Рефрижераторные трюмы снабжают искусственной вентиляцией.

Системы вентиляции обычно выполняют по групповому принципу, объединяя в группы однотипные по параметрам воздуха помещения в пределах одной вертикальной противопожарной зоны и одного водонепроницаемого отсека.

На судах, перевозящих скоропортящиеся грузы, а также в провизионных рефрижераторных кладовых применяют систему охлаждения воздуха (аэрорефрижерации). Воздух, вдуваемый в эти помещения, охлаждается либо в результате продувания его через специальные теплообменники, охлаждаемые в свою очередь с помощью рефрижераторных машин, либо непосредственно в обслуживаемом помещении, в котором установлены специальные батареи с хладоноси-телем — рассолом.

Чтобы лучше сохранить груз, а также уменьшить коррозию, в сухогрузные трюмы и грузовые танки подают осушенный воздух. Воздух осушают, пропуская его через воздухоосушительную установку со специальным химическим влагопоглотителем (адсорбентом), роль которого выполняет хлористый литий, силикагель, феррогель и другие вещества. Практикуется объединение воздухоосушительной установки с системой инертных газов; в этом случае в грузовые помещения подается не осушенный воздух, а осушенные инертные газы, что не только способствует уменьшению коррозии, но и повышает противопожарную безопасность.

Система кондиционирования воздуха, получившая широкое распространение на морских судах, необходима для создания в помещениях, главным образом жилых и общественных, воздушной среды заданной температуры и влажности независимо от внешних условий. В этой системе сочетаются принципы действия систем вентиляции, отопления, охлаждения и осушения воздуха, поэтому в помещениях, имеющих систему кондиционирования, никаких других из упомянутых систем не устанавливают.

Систему кондиционирования оборудуют в пределах каждого водонепроницаемого отсека; группу помещений обслуживает один центральный кондиционер. Некоторые помещения (например, кают-компания, салоны) может обслуживать автономный кондиционер. Кондиционер состоит из воздушного фильтра, калориферов (первичного и вторичного), охладителя воздуха, увлажнителя и влагоотделителя. В зимнее время поступающий снаружи холодный воздух подогревается и увлажняется; в летнее время воздух охлаждают и осушают. В помещении заданные параметры воздуха поддерживаются автоматически с помощью специальных регуляторов.

В работе системы кондиционирования воздуха можно использовать атмосферный воздух, а также, частично, воздух обслуживаемого помещения (рециркуляционный воздух).

Различают два основных типа систем кондиционирования воздуха:

  • низконапорную (низкоскоростную)
  • высоконапорную (высокоскоростную)

Низконапорная система (рис. 8.25, а) состоит из кондиционера, вентиляторов, магистрального трубопровода и местных отростков с воздухораспределителями. Засасываемый вдувным вентилятором наружный воздух поступает в кондиционер, обрабатывается и через магистральный трубопровод подается к воздухораспределителям, откуда попадает в обслуживаемые помещения. Из помещений воздух удаляется вытяжным вентилятором, причем около 2/3 его снова поступает в кондиционер. Так как при такой схеме полная обработка воздуха осуществляется в центральном кондиционере, то во все помещения поступает воздух с одинаковыми параметрами; поэтому данную систему применяют для помещений, в которых не требуется индивидуальной регулировки, — кают-компания и другие общественные помещения.

Высоконапорная система (рис. 8.25, б и в) кондиционирования отличается более высокой скоростью подачи воздуха (20—30 м/с вместо 10—15) и большим его напором. Ее применяют в помещениях, требующих индивидуального регулирования температуры, и выполняют или по одноканальной, или двухканальной схеме.

Системы кондиционирования воздуха

В первом случае в центральный кондиционер поступает только наружный воздух, который доводят до температуры 10—15° и под повышенным напором подают в местные (каютные) кондиционеры, представляющие собой водяные калориферы; здесь воздух вторично подогревается до 20—25°. Обработанный таким образом воздух выходит из каютных кондиционеров с повышенной скоростью, подсасывая при этом воздух из помещения. Последний, проходя через кондиционер, также подвергается подогреву (или охлаждению — в зависимости от времени года). Таким образом осуществляется рециркуляция и местное регулирование температуры.

При двухканальной схеме к помещениям по двум параллельным магистралям пошлют подогретый и холодный воздух, который можно в разных пропорциях смешивать в каютных воздухораспределителях.


Многим известно, что весь окружающий нас живой мир, и человек не исключение, постоянно взаимодействует с внешней средой, обусловленной климатическими, погодными, акустическими и другими факторами. Жизнедеятельность человека связана с расходом энергии. Пополнение этой энергии происходит за счет процесса окисления соединений углеводов в организме человека. Источником поступления кислорода для человека является вдыхаемый воздух, а углеводов- потребляемые продукты питания. Получая из окружающей среды кислород и пищу, человек выделяет тепло, воду, углекислый газ и другие продукты жизнедеятельности. Для нормального самочувствия человека важно не только содержание кислорода во вдыхаемом воздухе, но и его газовый состав, температура, давление, подвижность, чистота.

В судовых помещениях воздушная среда оценивается ее чистотой и качеством. Чистота воздуха характеризуется степенью его загрязнения газовыми и взвешенными примесями, а качество- степенью сохранения своих природных свойств. Качество и чистота воздуха судовых помещений напрямую находятся в зависимости от свойств воздуха снаружи и поступающих продуктов эндогенного (от человека) и экзогенного (природного и искусственного) происхождения.

В зависимости от интенсивности выполняемой работы человек потребляет с выдыхаемым воздухом 20 и более литров кислорода в час. При этом он выдыхает 18–36 л Углекислого газа (СО2), 40–415 г влаги, а также выделяет 330–1050 кДж теплоты, кишечные газы, некоторые вредные вещества (аммиак, органические вещества и др.). Вредные выделения человека пропорциональны количеству выдыхаемого им СО2, зависящеему от тяжести выполняемой работы и времени пребывания в помещении человека.

В помещениях на судне параметры воздуха, обеспечивающие эффективную работу и отдых людей, в том числе эксплуатацию различного судового оборудования, определены санитарными нормами. Поэтому система вентиляции играет важную роль в работе всего судна, а для того чтобы всё функционировало и работало необходимо иметь качественную и исправную вентиляцию в каждом помещении.

Вентиляционные системы обеспечивают требуемое качество и чистоту воздуха, за счет поступления в судовые помещения воздуха снаружи и устранение из них загрязненного. К тому же, системы вентиляции предназначены для подачи воздуха к механизмам, котлам, электрооборудованию и системам, потребляющим воздух в процессе эксплуатации.

Системы вентиляции проектируются, как принято, по групповому принципу, при котором в группу объединяются судовые помещения с одинаковыми или близкими требованиями к параметрам воздуха и одинаковым характером вредных выделений. Автономный принцип проектирования используется для вентиляционных систем помещений большого объема (помещения энергетической установки, грузовые трюмы и цистерны, ангары) и помещений с опасными выделениями (насосные отделения танкеров, аккумуляторные и т. п.). В общей сложности в состав систем вентиляции входят устройства для приема для приема и выброса воздуха, фильтры, вентиляторы, арматура и трубопроводы, глушители воздушного шума, воздухораспределители, приборы контроля и автоматического управления.

В зависимости от способа движения системы вентиляции различают естественные, искусственные (механические) и комбинированные. При естественной вентиляции воздухообмен происходит за счет разности плотностей теплового и холодного воздуха внутри помещений (тепловое побуждение) и снаружи, также, путем использования скоростного напора ветра или воздушных потоков, которые обдувают движущееся судно (ветровое побуждение). Тепловое побуждение возможно только до тех пор, пока существует разность температур между внутренним и наружным воздухом помещений. Аэрация здесь происходит посредством иллюминаторов, вентиляционные решетки дверей, световые люки и т. п. Ветровое побуждение обеспечивается установкой в потоках наружного воздуха эжекционных головок и поворотных раструбных дефлекторов, преобразующих кинетическую энергию этих потоков в статистическое давление, отличающиеся от давления воздуха в вентилируемом помещении. За счет разности давлений и осуществляется воздухообмен между внутренним и наружным воздухом помещений (рис.1).


Рис.1. Системы вентиляционных каналов: а — продольная; b — поперечная

Естественная вентиляция малоэффективна, нестабильна, отличается низкими напорами, значительными габаритами и зависимостью от погодных условий. Ввиду этого несмотря на простоту устройства, отсутствие потребности в механической энергии и малую стоимость на современных судах естественная циркуляция находит ограниченное применение.

В большей степени используется на современных судах искусственная вентиляция, при которой прием наружного и удаление загрязненного внутреннего воздуха происходит через вентиляционные шахты либо грибовидные головки с помощью вентиляторов. Системы искусственной вентиляции позволяют создавать значительные напоры воздуха, устанавливать различные фильтры, уменьшать сечение воздуховодов, а, следовательно, массу и габариты оборудования. Этими системами оборудуется большая часть судовых помещений. Но их эксплуатация требует высоких затрат энергии на работу вентиляторов и может вызвать значительные уровни шума. Некоторые помещения на судне оборудованы комбинированной системой, где совместно используется и естественная, и искусственная вентиляции.

По способу исполнения воздухообмена различают приточную, втяжную и смешанную (приточно-вытяжную) вентиляцию. Приточная система вентиляции подает в помещение свежий наружный воздух и создает в нем избыточное давление, за счет которого из вентилируемого помещение вытесняется загрязненный воздух, к тому же предотвращается поступление в него из тамбуров и коридоров воздуха, содержащего опасные примеси. Системами приточной вентиляции обслуживаются помещения с постоянным или периодическим пребыванием людей и посты управления. К ним относятся служебные, жилые и общественные помещения, радиопосты, рубки, румпельные, посты связи и другие помещения, не имеющие опасных парогазовых выделений.

Вытяжная вентиляция, удаляя из помещения отработанный (загрязненный) воздух, осуществляет в нем некоторое разрежение, следовательно, в помещение поступает свежий воздух из соседних помещений и коридоров или снаружи через приемные устройства. Система искусственной вытяжной вентиляции устанавливается в камбузах, кладовых, санитарно-гигиенических помещениях, курительных, душевых, ванных, прачечных, насосных, отдельных танкеров, станциях углекислотного и химического пожаротушения, помещениях холодильных машин, аккумуляторных и др.

Для увеличения эффективности вентиляции используют приточно-вытяжные системы, где в зависимости от функции помещения преобладают или приток, или вытяжка воздуха. Системами приточно-вытяжной вентиляции оборудуют помещения энергетических установок, салоны, камбузы, столовые и т. п. Вентиляция общественных и медицинских помещений осуществляется автономными приточно-вытяжными системами.

В целях перемещения воздуха или других газов в системах микроклимата используют в основном центробежные электровентиляторы серии ЦСУ и осевые серии ОСО. Подача центробежных электровентиляторов составляет 250–40000 м3/ч при полном давлении 480–3840 Па, а осевых соответственно 900–40000 м3/ч и 122–1030 Па.

C:\Users\Михаил\AppData\Local\Microsoft\Windows\INetCache\Content.Word\5-72.jpg

Рис. 2. Вентиляционные устройства: а — дефлектор; б — эжекционная головка: 1 — стопор; 2 — свежий воздух; 3 — труба; 4 — отверстие с сеткой; 5 — эжектор; 6 — входной конус; 7 — палуба; 8 — загрязненный воздух

Прием и удаление воздуха при естественной вентиляции осуществляется с помощью эжекционных головок и поворотных раструбных дефлекторов, которые устанавливаются на верхней палубе, рубках и надстройках, в местах, защищенных от заливания водой. Что же такое Эжекционные головки? Это струйный аппарат для отсасывания газов из замкнутого пространства и поддержания разрежения. В свою очередь дефлектор- специальный прибор, служащий для целей вдувной и вытяжной вентиляции. Эжекционные головки и дефлекторы могут быть ориентированы по отношению к направлению набегающего потока наружного воздуха различным образом. Когда дефлектор (Рис. 2) повернут раструбом навстречу потоку, в нем создается повышенное статическое давление, и свежий воздух нагнетается в помещение. Ежели раструб дефлектора развернут по потоку, то в нем создается разрежение и происходит вытяжка воздуха из помещения. Во избежание попадания в судовые помещения через дефлекторы воды они могут закрываться штормовыми крышками.

Эжекционные головки предназначены только для удаления из судовых помещений загрязненного воздуха в атмосферу (Рис. 2). Эжекционная головка устанавливается навстречу потоку малым конусом. Набегающий поток, попав в малый конус, выходит из него с большой скоростью, создавая над вертикальным воздуховодом пониженное давление (разрежение). В результате воздух из помещения отсасывается в корпус эжекционной головки и выходит в атмосферу через большой конус. Эжекционные головки осуществляют удаление воздуха из помещений более эффективно, чем дефлекторы. При хорошей погоде дефлекторы и эжекционные головки обеспечивают воздухообмен в судовых помещениях без затрат дополнительной энергии. Если скорость набегающего потока высока, а температура наружного воздуха небольшая, они могут обеспечить хороший воздухообмен в помещениях. Но всё же чаще дефлекторы и эжекционные головки используются как дополнительное средство в комбинированной вентиляционной системе.

Рассмотрим работу системы вентиляции на примере помещений грузовых насосов нефтеналивных судов (Рис.3). Здесь грузовые насосные отделения оснащаются автономной системой приточно-вытяжной вентиляции. Приточная вентиляция вытяжная- искусственная, естественная. Естественный приток воздуха происходит посредством приемных отверстий, которые находятся на двух цилиндрических колоннах (по одной с каждого борта) с водозащищенными головками высотой 4–5 м от грузовой палубы. Вытяжка воздуха производится вентиляторами искробезопасного исполнения, расположенными в отдельных помещениях, не сообщающихся напрямую с насосным отделением.


Рис. 3. Схема автономной приточно-вытяжной системы вентиляции грузового насосного отделения: 1 — дефлектор; 2 — грибовидная водогазонепроницаемая головка; 3 — водогазонепроницаемая крышка; 4 — выпускная вентиляционная решетка; 5, 7 — вытяжные электровентиляторы; 6 — вентиляторная; 8, 9 — отверстия для забора воздуха; 10 — грузовое насосное отделение

Исходя из вышесказанного понятно одно, осуществление качественной вентиляции на судне не такая простая задача как может показаться на первый взгляд. При проектировании необходимо учитывать класс судна и его назначение, только тогда будет понятно, какой тип вентиляции применять для нормальной работы систем судна и продуктивной работы человека в условиях плавания.

Основные термины (генерируются автоматически): помещение, вытяжка воздуха, естественная вентиляция, загрязненный воздух, искусственная вентиляция, наружный воздух, свежий воздух, система вентиляции, чистота воздуха, эжекционная головка.


В данной статье рассматриваются современные системы кондиционирования воздуха летательных аппаратов, их принципиальные схемы, а также достоинства и недостатки.

Ключевые слова: летательный аппарат, кондиционирование, нормальные условия существования, система кондиционирования, наддув, воздухо-воздушный теплообменник, турбохолодильник, испарительный теплообменник

Летательный аппарат (ЛА) — это техническое устройство, предназначенное для полетов в космическом либо воздушном пространстве. Чем выше ЛА поднимается над поверхностью земли, тем больше отличаются условия за его бортом от нормальных наземных условий существования человека. В первую очередь это понижение температуры и атмосферного давления.

Как известно экипаж и оборудование могут существовать в нормальных наземных условиях либо при их незначительных отклонениях. Такие условия создаются системами жизнеобеспечения ЛА и экипажа, одной из которых является система кондиционирования воздуха (СКВ).

Кондиционирование воздуха представляет собой автоматическое поддержание в помещениях требуемых параметров воздуха с целью создания, главным образом, оптимальных (комфортных) условий жизнеобеспечения людей. Кондиционирование воздуха и комплекс технических решений в совокупности представляют собой систему кондиционирования воздуха (СКВ).

В состав СКВ входят технические средства приготовления, перемешивания и распределения воздуха, приготовления холода, а также технические средства хладо- и теплоснабжения, автоматики, дистанционного управления и контроля [2].

Системы кондиционирования ЛА являются частным случаем СКВ, в них осуществляется обработка воздуха в более сложных условиях и по большему числу параметров, таких как температура, относительная влажность, чистота, скорость движения [1]. Данные системы находятся на более высоком уровне по сравнению с наземными системами кондиционирования.

СКВ воздушных судов предусмотрены для создания и поддержания в них:

– установленных нормами допускаемых условий воздушной среды;

– искусственных климатических условий в соответствии с технологическими требованиями производства;

– оптимальных (или близких к ним) гигиенических параметров воздушной среды в производственных помещениях;

C:\Users\Викуха\Desktop\Безымянный.jpg

Рис. 1. Схема размещения элементов системы кондиционирования: 1 — выпускные и предохранительные клапаны; 2 — клапан сброса; 3 — вентиляторы охлаждения радиоаппаратуры; 4 — распределительный трубопровод кабины экипажа; 5 — рециркуляционный трубопровод; 6 — кабина холодильной установки; 7, 21 — холодильный испарительные установки; 8, 22 — распределительные трубопроводы пассажирской кабины; 9 — рециркуляционный трубопровод. 10 — подводящий трубопровод левой системы; 11, 16, 18 — воздухозаборники, 12, 17 — кабинные нагнетатели, 13 — выпускной и предохранительный клапаны; 14, 24 — устройство для увеличения тяги; 15 — теплообменник; 19 –подводящий тркбопровод правой системы; 20, 23 — подводящий трубопровод жалюзи

В общем случае бортовая система кондиционирования в герметичной кабине при любых атмосферных условиях и для всех режимов полета должна поддерживать заданные давление, температуру, влажность, физико-химический состав воздуха, а также допустимый уровень шума [1].

В соответствии с этими задачами в СКВ воздушных судов (рис.1):

  1. агрегаты оборудования;
  2. приборы автоматического регулирования;
  3. приборы ручного управления;
  4. контрольная аппаратура;
  5. сигнализационная аппаратура;
  6. вспомогательное оборудование.

Основные требования норм летной годности самолетов к работе СКВ:

  1. СКВ ЛА должна обеспечивать заданные параметры воздух на всех режимах полета, а также на земле независимо от внешних климатических условий.
  2. Функционирование СКВ в кабине не должно зависеть от работы других систем, использующих общие с ней источники сжатого воздуха.
  3. СКВ должна состоять из основной и дублирующей подсистем, где вторая подсистема поддерживает нормальные условия существования экипажа, пассажиров и оборудования при выходе из строя первой.
  4. Температура воздуха в кабине и в отсеках должна задаваться и управляться независимо.
  5. На ЛА с продолжительностью полета больше двух часов необходимо предусматривать систему увлажнения.

На воздушных судах применяют следующие виды СКВ:

  1. Одноступенчатые двухкаскадные системы кондиционирования воздуха;
  2. Одноступенчатые трехкаскадные системы кондиционирования воздуха;
  3. Двухступенчатая четырехкаскадная система кондиционирования воздуха.

Рассмотрим некоторые из перечисленных систем кондиционирования воздуха.

Одноступенчатые двухкаскадные системы кондиционирования самолетов делятся на систему с конвективным теплообменом (см. рис.2) и систему с панельным теплообменом (см. рис.3).

В СКВ с конвективным теплообменом атмосферный воздух забирается воздухозаборником, очищается от механических примесей в фильтре и поступает в компрессор двигателя. Основная масса воздуха после сжатия в компрессоре направляется в камеру сгорания самолетного двигателя, а часть его отбирается в СКВ кабин. После воздух проходит перекрывной кран, регулятор — ограничитель абсолютного давления, обратный клапан, газовый фильтр и через распределительный кран поступает в другие агрегаты системы кондиционирования [1].

Воздух охлаждается в воздухо-воздушном теплообменнике забортным воздухом, подаваемым под скоростным напором или нагнетаемым вентилятором турбохолодильника непосредственно на турбину или в компрессор. При этом первым каскадом охлаждения является теплообменник, а вторым — турбохолодильник.

Окончательно охлажденный воздух поступает во влагоотделитель для предотвращения попадания влаги в СКВ. Но перед поступлением в коллектор кабины воздух увлажняется. Из коллектора воздух направляется по трубопроводам к отдельным агрегатам и в кабину.

Температура воздуха в пассажирской кабине регулируется при помощи термостата.


Рассмотренная система кондиционирования получила широкое распространение, но она имеет два существенных недостатка: перепад между температурой внутренней стенки кабины и воздухом и неравномерность распределения охлаждающего воздуха по кабине, вследствие чего температура воздуха может отличаться от требуемой.

Для их устранения используют систему кондиционирования с панельным теплообменом, в которой воздух, отбираемый от двигателя, поступает в воздухо-воздушный теплообменник и турбохолодильник. Далее воздух поступает через обратный клапан, увлажнитель и другие элементы системы в обогревательные панели кабины, саму кабину экипажа и пассажирскую кабину. После он выбрасывается в атмосферу через насадки [1].


Главный недостаток рассмотренной СКВ — утяжеление конструкции воздушного судна.

На самолетах с большими скоростями полетов и малыми габаритами, например, на истребителях, применяются преимущественно одноступенчатые трехкаскадные системы кондиционирования.

В данной системе третья ступень представлена в качестве испарительного теплообменника, в котором происходит охлаждение воздуха, прошедшего первые две ступени — воздухо-воздушный теплообменник (ВВТ) и турбохолодильник (ТХ).

Испарительные теплообменники работают по открытому циклу, при этом воздух охлаждается за счет скрытой теплоты испарения хладагентов.

В отличие от СКВ самолетов на вертолете Ми-26Т система кондиционирования использует горячий воздух, отбираемый за четвертой ступенью каскада высокого давления компрессоров двигателей. В случае выхода из строя одного из двигателей работоспособность системы обеспечивается другим. Кроме этого на вертолете предусмотрена вентиляция кабины экипажа наружным воздухом.

В наземных условиях при неработающих двигателях горячий воздух для СКВ подается от бортовой вспомогательной силовой установки ТА-8В или от наземной установки воздушного запуска. Конструктивно СКВ выполнена таким образом, что позволяет включать кондиционирование воздуха экипажа и обогрев грузовой кабины как одновременно, так и раздельно [4].

Система регулирования давления обеспечивает наддув и поддержание требуемого избыточного давления в кабинах экипажа и сопровождающих.

В состав СКВ входят подсистемы:

– кондиционирование воздуха в кабине экипажа;

– обогрев грузовой кабины;

Основные агрегаты СКВ размещены под полом кабины экипажа с левой стороны, между шпангоутами ЗН и 5Н. Управление системой кондиционирования воздуха осуществляется со специального щитка, расположенного на левом пульте бортинженера. Схема размещения системы кондиционирования вертолета Ми-26Т представлена на рисунке 4.




В данной статье был выполнен обзор существующих систем кондиционирования воздушных судов. А также рассмотрены основные виды СКВ самолетов и изучена СКВ вертолета Ми-26Т.

  1. Воронин Г. И. Системы кондиционирования воздуха на летательных аппаратах: учебник / Г. И. Воронин — М: Машиностроение, 1973. — 443с.
  2. Явнель Б. К. Курсовое и дипломное проектирование холодильных установок и систем кондиционирования воздуха: учебник / Б. К. Явнель — М: Агропромиздат, 1982. — 223с.
  3. Доссат Рой Дж. Основы холодильной техники: учебник / Рой Дж. Доссат — М: Легкая и пищевая промышленность, 1984. — 520с.
  4. Сорокин А. В. Конструкция вертолетов: учебное пособие / А. В. Сорокин — Ростов-на-Дону, 2010–123с.

Основные термины (генерируются автоматически): система кондиционирования, система кондиционирования воздуха, воздухо-воздушный теплообменник, кондиционирование воздуха, воздух, кабина экипажа, пассажирская кабина, температура воздуха, воздушная среда, горячий воздух.

Ключевые слова

летательный аппарат, наддув, система кондиционирования, кондиционирование, нормальные условия существования, воздухо-воздушный теплообменник, турбохолодильник, испарительный теплообменник

летательный аппарат, кондиционирование, нормальные условия существования, система кондиционирования, наддув, воздухо-воздушный теплообменник, турбохолодильник, испарительный теплообменник

Похожие статьи

Обзор основных агрегатов систем кондиционирования воздуха.

Система кондиционирования воздуха (СКВ) — одна из самых главных систем жизнеобеспечения летательных аппаратов.

Теплообменники бывают нескольких типов: воздухо-воздушные (охлаждение за счет встречного потока воздуха), топливовоздушные.

Обзор системы жизнеобеспечения самолета АН-30

Система кондиционирования воздуха самолета АН-30 включает систему подачи воздуха, турбохолодильную установку и воздухо-воздушный радиатор.

система жизнеобеспечения, герметическая кабина, система кондиционирования воздуха, самолет АН-30.

Воздушное отопление помещений | Статья в журнале «Техника.»

Согласно СНиПу 41–01–2003 «Отопление, вентиляция и кондиционирование» воздушное отопление это система обогрева зданий с применением горячего воздуха. Как указывает В. Н. Талиев, воздушное отопление — это замкнутая система.

Перспективы развития охлаждения наддувочного воздуха.

воздух, атмосферный воздух, охладитель, воздушный заряд, система охлаждения, цилиндр двигателя, тепловая напряженность деталей, воздухо-воздушный охладитель, внутреннее сгорание, охлаждение.

Ключевые слова: система кондиционирования воздуха.

Система кондиционирования воздуха воздушного судна и встроенная в нее холодильная установка будут работать по принципу системы «Умное воздушное судно», аналогом которой является система «Умный дом».

Обзор термодинамических характеристик хладагентов.

Преимущество использования в системе кондиционирования воздуха хладагента R-410А очевидно. У него отсутствует температурное скольжение, высокий показатель удельной холодопроизводительности.

Европейские, американские и российские нормативные.

Ключевые слова: вентиляция, кондиционирование, качество воздуха, ASHRAE 62.1, EN 13779, СП 60.13330.

качества внутренней среды при проектировании систем вентиляции и систем кондиционирования воздуха, после ввода в эксплуатацию систем вентиляции и систем.

Эффективное осушение воздуха помещений бассейнов

Обзор основных агрегатов систем кондиционирования воздуха летательных аппаратов. Воздушное отопление помещений. Моделирование функционирования систем регенерации воздуха для расчета их надежности.

Вентиляционные системы, применяемые на судах

В судовых помещениях воздушная среда оценивается ее чистотой и качеством.

К тому же, системы вентиляции предназначены для подачи воздуха к механизмам, котлам, электрооборудованию и системам, потребляющим воздух в процессе эксплуатации.


В данной статье были рассмотрены основные агрегаты системы кондиционирования воздуха и их назначение, а также представлен краткий обзор работы самой системы кондиционирования воздуха.

Ключевые слова: система кондиционирования воздуха, теплообменник, турбохолодильник, регулятор температуры, влагоотделитель, увлажнитель воздуха, фильтр, воздухопровод

Система кондиционирования воздуха (СКВ) — одна из самых главных систем жизнеобеспечения летательных аппаратов. Основной задачей СКВ является создание на борту летательного аппарата условий для нормальной жизнедеятельности человека в полете: поддержание определенного давления, комфортной температуры и необходимую долю влагосодержания воздуха, а также его очищение от вредных примесей и охлаждение оборудования, находящегося на борту.

Принцип работы системы состоит из нескольких этапов. Вначале происходит отбор воздуха от компрессоров двигателей, после чего он поступает в систему распределения (вентиляции), где проходит охлаждение, а также регулирование необходимого содержания влаги и комфортной температуры, перед тем как он попадет в герметичную часть фюзеляжа летательного аппарата.

Рассмотрим основные агрегаты современных систем кондиционирования воздуха летательных аппаратов.

Теплообменным аппаратом (теплообменником) называется специальный агрегат, внутри которого происходят процессы теплопередачи от среды с наибольшей температурой к среде с наименьшей температурой. Иными словами, теплообменник и связанные с ним клапаны необходимы для того чтобы довести температуру и давление поступающего воздуха до таких показателей, при которых может функционировать турбохолодильник.

Авиационные теплообменники характеризуются большей интенсивностью теплообмена, малыми размерами конструкции и гидравлическим сопротивлением. Теплообменники бывают нескольких типов: воздухо-воздушные (охлаждение за счет встречного потока воздуха), топливовоздушные (охлаждающий элемент авиационное топливо), воздухо-жидкостные (включают в себя воздушную и жидкостную секции) и испарительные (впрыск воды или ее смеси в воздушный поток).


Рис. 1. Пример теплообменника

Турбохолодильники — это специальные установки, внутри которых осуществляются близкие к адиабатическому процессы расширения воздуха с последующим понижением его температуры.


Рис. 2. Устройство турбины турбохолодильной установки

При понижении давления в сопловом аппарате, температура воздуха понижается, а уже охлаждённый воздух попадает на рабочее колесо турбины турбохолодильной установки, приводя её в движение. Для достижения максимального перепада температур в турбохолодильнике необходимо чтобы работа, производимая вращением турбины была использована. Для реализации этого принципа, используется вентилятор, потребляющий данную энергию, используя для прокачки воздуха через теплообменник или обеспечения вентиляции различных отсеков летательного аппарата.

Регуляторы температуры воздуха.

Регулировка температуры воздуха в кабине происходит следующим образом: подаваемый от компрессора воздух делится на две линии. Первая — «горячая» линия, по которой воздух или охлаждается (но частично), или нагревается и через регулятор расхода поступает далее в трубопровод (в зависимости от температуры поступающего воздуха). Вторая — «холодная» линия, по которой воздух охлаждается и поступает далее в трубопровод, где происходит смешивание воздуха.

При полёте на небольшой высоте в воздухе, который подается в кабину после охлаждения, влага находится в парообразном и капельном состояниях. Капли оседают на стенках трубопроводов, в блоках оборудования, что может вызывать отказ аппаратуры, или создаст затуманивание, затрудняющее пилотирование. Для удаления капельной влаги в СКВ устанавливаются влагоотделители, которые при помощи специальных фильтров отправляют жидкость в водосборник. Основными конструктивными элементами влагоотделителя являются: корпус, коагулятор, клапан, винт-завихритель, пружина, корпус влогауловителя и проходник.


Рис. 3. Схема влагоотделителя

Влага через сетчатый коагулятор поступает в завихритель, на коагуляторе, представляющем собой четырехслойную сетку, происходит укрупнение капель. В завихрителе воздух с каплями воды закручивается, двигаясь по спиральным траекториям. Капли воды отбрасываются к стенкам корпуса влагоотделителя. Под действием воздушного потока попадает через специальный зазор в полость, а затем через проходник отводится в продувочный контур.

На больших высотах воздух становится очень сухим, поэтому применяются специальные увлажнители парогенераторного типа (как правило), в которых вода в состоянии пара поступает в воздух. Электроувлажнители в СКВ практически не применяются, так как при испарении в специальных кипятильниках появляется неприятный запах.

Поступающий в кабину атмосферный воздух, загрязнённый пылью размером до нескольких десятков микрон, называется аэрозолем. Аэрозоли очень опасны, поскольку, оседая на оборудовании, они изменяют его параметры, что неприемлемо, поэтому в системе кондиционирования воздуха наличие аэрозольного фильтра обязательно.


Рис. 4. Пример воздушного фильтра

В настоящее время изобретено огромное количество фильтрующих материалов, состоящих из волокон полиакрилата или стеклянных и базальтовых волокон. Эти материалы выдерживают температуры до 250 или 450. 600 °С соответственно.

На пассажирских самолётах длина воздухопроводов системы кондиционирования составляет несколько сотен метров, а масса колеблется от 500 до 600 кг, что является практически половиной массы всей системы. Воздухопроводы проходят как по пассажирским салонам, так и в кабине экипажа. Диаметры труб находятся в пределах от 4 до 200 мм. и обеспечивают подачу воздуха с температурами от -40 до +600 °С.

Воздушная магистраль СКВ изготавливается из алюминиевых сплавов АМг или АМц, из стали Х18Н9Т, титановых сплавов ОТ4 или из армированных неметаллических материалов.

Вопросы понимания конструкции, принципа работы, слабых мест систем кондиционирования воздуха очень важны для поддержания заданного уровня безопасности и регулярности полётов.

  1. Воронин Г. И. Системы кондиционирования воздуха на летательных аппаратах: учебник/ Г. И. Воронин — Москва: Машиностроение, 1973.-443с.
  2. Антонова Н. В. Авиационные системы кондиционирования воздуха: Учебное пособие к лабораторной работе/В. В. Ружицкая — Москва: МАИ, 2003.-16с.
  3. Проектирование авиационных систем кондиционирования воздуха Антонова Н. В., Шустров Ю. М. изд. Машиностроение.
  4. Авиационный технический справочник. Александров В. Г., Майоров А. В., Потюков Н. П. 1975г.

Основные термины (генерируются автоматически): система кондиционирования воздуха, воздух, воздушный поток, капля воды, комфортная температура, летательный аппарат, поступающий воздух, температура, теплообменник, турбохолодильная установка, турбохолодильник, увлажнитель воздуха.

Ключевые слова

Похожие статьи

Обзор существующих систем кондиционирования воздушных.

В данной статье рассматриваются современные системы кондиционирования воздуха летательных аппаратов, их принципиальные схемы, а также достоинства и недостатки. Ключевые слова: летательный аппарат, кондиционирование.

Обзор системы жизнеобеспечения самолета АН-30

система кондиционирования воздуха, теплообменник, температура, воздух, поступающий воздух, увлажнитель воздуха, капля воды, турбохолодильная установка, летательный аппарат, комфортная температура, воздушный.

Перспективы развития охлаждения наддувочного воздуха.

система кондиционирования, система кондиционирования воздуха, воздухо-воздушный теплообменник, кондиционирование воздуха, воздух

При использовании СКВ горячий воздух от двигателей охлаждается в турбохолодильных установках и подается в кабины.

Разработка и исследование автономных cистем тепло.

система кондиционирования воздуха, теплообменник, температура, воздух, поступающий воздух, увлажнитель воздуха, капля воды, турбохолодильная установка, летательный аппарат, комфортная температура, воздушный.

Вентиляционные системы на подводных лодках

помещение, чистота воздуха, система вентиляции, свежий воздух, вытяжка воздуха, наружный воздух, искусственная вентиляция, загрязненный воздух, естественная вентиляция, эжекционная головка. Обзор существующих систем кондиционирования воздушных.

Формирование теплового режима охладителя наддувочного.

Температура окружающего воздуха +25°С.

Обзор существующих систем кондиционирования воздушных.

Обзор основных агрегатов систем кондиционирования воздуха летательных аппаратов.

Эффективное осушение воздуха помещений бассейнов

скорость движения воздуха, температура воздуха, естественная вентиляция, замер параметров, вытяжной воздух, этаж, канал квартиры, выход, вытяжная вентиляционная шахта, наружный воздух.

Повышение эффективности работы компрессорных станций за.

Понижение температуры воздуха увеличивает его плотность, расход воздуха через компрессор, электрическую

Перспективы развития охлаждения наддувочного воздуха. Сжатый в компрессоре воздух поступает в охладители и затем в цилиндры поршневой части.

Расчет основных эксплуатационных параметров холодильной.

Температура воздуха, поступающей в конденсатор tВОЗД.1 = 25°С, температура воздуха, выходящей из конденсатора tВОЗД.2 = 35°С.

где —действительный тепловой поток в конденсаторе, Вт; —удельная теплоемкость воды (с = 4,19 кДж/(кг • К)); — плотность воды.

Упрощенная схема осушительной системы показана на рисунке ниже. Вода, собирающаяся в днищевой части судна, всасывается через фильтр и клапанную коробку и осушительным насосом выводится за борт. Так как трюмная вода часто содержит маслосодержащие примеси (особенно в районе машинного отделения), ее пропускают через маслоотделитель, который предназначен для того, чтобы отделять масло и маслосодержащие частицы и направлять эти примеси в специальные цистерны.


Осушительная система

1 — всасывающая сетка; 2 — клапанная коробка; 3 — осушительный насос; 4 — маслоотделитель

Судовые вспомогательные механизмы и системы делятся на насосы, компрессоры, фильтры, сепараторы, маслоотделители и установки для устранения отходов, системы водоснабжения, теплообменные аппараты (подогреватели, охладители, конденсаторы и испарители). Насосами называют механизмы, с помощью которых жидкости транспортируются или перекачиваются из помещения с меньшим давлением в помещение с большим давлением. В зависимости от принципа действия различают объемные (поршневые, шестеренные, винтовые), центробежные (лопастные) и струйные насосы. На судах насосы разделяют по их назначению: трюмные, балластные, питательные для масла и охлаждающей воды, пожарные, нагнетательные и т. д. Объемные насосы служат для того, чтобы периодически нагнетать отдельные количества жидкости из камеры всасывания в камеру сжатия. Самый простой объемный насос - это поршневой. Принцип, работы такого насоса двойного действия показан на рисунке ниже.


Принцип действия поршневого насоса двойного действия

1 — поршень; 2-5 — клапаны; 6 — всасывающая труба; 7 — напорная труба.

Другим очень распространенным видом объемного насоса является шестеренный. Подающий элемент состоит из двух зубчатых колес, помещенных в герметическом корпусе. Одно из зубчатых колес приводится во вращение, например, электродвигателем. При вращении колес зубцы, выступающие из зубчатого венца, вызывают увеличение объема в насосе, за счет чего жидкость всасывается нижним входным патрубком. Отдельные количества поступившей жидкости последовательно накапливаются в промежуточном пространстве между зубчатыми колесами и подаются между корпусом насоса и колесами к их внешней стороне. Наконец, жидкость поступает в камеру сжатия. За счет последовательного вхождения колес в зубчатый венец жидкость выдавливается в напорный патрубок. Шестеренные насосы используются на судах для выкачивания вязких жидкостей с хорошими смазочными свойствами, таких как масло, топливо и т. д.


Принцип действия шестеренного насоса

Винтовые насосы также относятся к группе объемных насосов. Жидкость от всасывающего патрубка поступает в промежуточные пространства между винтами, которые называются также камерами и расположены между ведущим винтом, подключенным непосредственно к двигателю, и ведомым. После поворота винтов на определенный угол жидкость в камере запирается; затем вдоль винтов она поступает наверх и оттуда нагнетается в напорный трубопровод. При слишком сильном повышении давления в камере сжатия открывается предохранительный клапан, и жидкость течет назад во впускную камеру.


Принцип действия винтового насоса

1 — ведущий вал; 2 — ведомые винты; 3 — предохранительно-перепускной клапан

Принцип действия центробежного насоса показан на рисунке ниже. Характерным признаком этих насосов является непрерывный поток жидкости. Рабочий орган насоса, ротор с лопатками, смонтирован на вращающемся валу насоса, который чаще всего подключается непосредственно к приводному электродвигателю. Лопатки вращающегося ротора передают энергию двигателя жидкости, протекающей через насос, создавая при этом давление, под воздействием которого жидкость идет от входа к выходу. Центробежные насосы повсеместно применяются в судовых энергетических установках. Они имеют различную конструкцию в зависимости от мощности. Так, мощность нагнетательных насосов для танкеров достигает нескольких тысяч тонн жидкости в час. Если для перекачиваемой жидкости (например, для воды в пожарных насосах или в питательных насосах парогенераторов) требуется более высокое давление, применяют многоступенчатые насосы. Принцип их действия состоит в том, что вода, достигшая определенного давления и покидающая первую ступень, течет ко всасывающему патрубку следующей ступени, где давление снова повышается.


Принцип действия центробежного насоса

Компрессорами называются машины, с помощью которых газы сжимаются от низкого давления на входе до высокого давления на выходе. Соотношение этих двух давлений представляет собой степень сжатия. Самым простым и чаще всего применяемым на судах компрессором является поршневой. По принципу действия он идентичен рассмотренному выше дизельному двигателю. Так как температура газов во время процесса сжатия повышается, в цилиндре компрессора можно получить степень сжатия только в пределах шести — восьми. Дальнейшее повышение степени сжатия приводит к росту температуры, оказывающей вредное воздействие на компрессор. Если необходимо получить более высокое давление (так, например, для пуска главного двигателя требуется давление воздуха 2,9 МПа), используют многоступенчатые компрессоры. Воздух атмосферного давления (0,59 МПа) всасывается в цилиндр высокого давления с меньшим рабочим объемом, чем в цилиндре низкого давления, так как количество воздуха уменьшается вследствие сжатия в цилиндре низкого давления и охлаждения в охладителе. В цилиндре высокого давления можно вновь повысить давление воздуха в шесть раз. Конечное давление воздуха составит тогда 3,5 МПа.


Принцип действия двухступенчатого воздушного компрессора

Наряду с поршневыми компрессорами на судах иногда встречаются ротационные (центробежные и осевые) и винтовые компрессоры. По принципу действия центробежный компрессор аналогичен центробежному насосу, а винтовой компрессор — винтовому насосу) в то время как осевой компрессор напоминает скорее турбину. Компрессоры применяют на судах в основном для сжатия воздуха и газов, например охлаждающих средств в рефрижераторных установках и системах кондиционирования воздуха. Фильтры служат для устранения из различных жидкостей и газов механических примесей, таких как пыль, маленькие металлические частицы, шлам и отложения. Фильтры состоят из корпуса, в котором чаще всего размещается вставная часть фильтра, имеющая форму металлических решеток с соответствующей шириной отверстий; здесь же находятся и прокладки из тонких пластинок (в щелевом фильтре) или из пористых материалов. Для удаления частичек из магнитных металлов применяются прокладки из твердых магнитов.

Очистку топлива и смазочных масел наряду с фильтрацией осуществляют с помощью следующих способов:

— гравитационно-седиментационного, т. е. отстаивания более тяжелых, чем вода, примесей в цистернах;

— центрифугированием в сепараторах.

Сепараторы предназначены для устранения примесей, более тяжелых, чем очищаемая жидкость. Их действие основано на возникающей при этом центробежной силе. Принцип действия судового сепаратора для очистки топлива и смазочного масла показан на рисунке ниже. При протекании загрязненного масла через цистерну все примеси, более тяжелые, чем вода (механические примеси, пыль, металлические частицы и т. д.), осаждаются на дне цистерны. При этом масло очищается с помощью силы тяготения. Процесс очистки проходит довольно долго и зависит от ускорения свободного падения. Для ускорения очистки масла от воды и твердых примесей ускорение свободного падения заменяется значительно большим центробежным ускорением за счет большой частоты вращения.


Принцип действия сепаратора

а — общий вид; b-е — фазы сепарации. 1 — тарельчатая крышка; 2 — тарелка; 3 — барабан; 4 — вертикальный вал; 5 — электродвигатель.

Сепараторы являются важными элементами судовых энергетических установок. Они служат для очистки смазочных масел и топлива для двигателей и парогенераторов. На новых судах сепараторные установки полностью автоматизированы. Для защиты морской воды от вредных загрязнений, в основном от остатков масла, используются маслоотделители. Трюмная вода, содержащая просочившиеся остатки топлива, смазочного масла и другие примеси, проходит через трюмным насос, затем через маслоотделитель, в котором отделяются масло и все примеси, которые легче воды. Очищенная таким образом вода откачивается за борт. Принцип действия маслоотделителя показан на рисунке ниже. вода попадает в маслоотделитель, начинает вращаться и все глубже опускается во внутреннюю часть аппарата. При медленном движении воды в воронкообразных цистернах частицы масла отделяются, т. е. они поднимаются или под воздействием центростремительной силы собираются около оси маслоотделителя. Отделившиеся частицы масла поднимаются и собираются в верхней части маслоотделителя, откуда они направляются в специальную цистерну отработавшего масла. Очищенная вода вытекает за борт. Загрязненное масло либо подается дальше для восстановления, либо сжигается в специальных печах, которые все чаще стали устанавливать на судах. В этих печах уничтожается весь мусор и отходы, которые могли бы загрязнить окружающую среду. На судах используют установки для обработки камбузной, моечной и канализационной воды. Отработавшую воду подвергают сильному оксидированию и биологической нейтрализации или же производят сгущение и обезвоживание сточных вод, а остатки сжигают.


Принципы действия маслоотделителя

1 — воронкообразный резервуар; 2 — коническое выпускное отверстие

Системы водоснабжения представляют собой цистерны, в которых создается давление, позволяющее подводить содержащуюся там воду (морскую, питьевую, мытьевую) ко всем потребителям на судне (водопроводным кранам, душам и т. д.). Вода в системы поступает с помощью насосов. Эти насосы сконструированы таким образом, что они могут дополнять так называемую воздушную подушку в системах водоснабжения. Воздух, подкачиваемый для поддержания необходимого давления (от 0,2 до 0,4 МПа), поступает от устанавливаемой иногда на судне компрессорной установки. Теплообменные аппараты, используемые на судах, в зависимости от. их назначения делятся на подогреватели и охладители, конденсаторы и испарители. Подогреватели и охладители служат для повышения или понижения температуры рабочих сред судовых установок. Так, например, для уменьшения вязкости тяжелое моторное топливо подогревают перед подачей его к ДВС. В жилых и бытовых помещениях судна подогревают также мытьевую воду и воздух. Охлаждают смазочное масло для двигателей или других машин, воздух в процессе сжатия, пресную воду для охлаждения главного двигателя, воздух для помещений, когда судно находится в теплых климатических зонах. В качестве теплоносителя чаще всего используется водяной пар относительно низкого давления, а в качестве охлаждающей среды — морская вода. Для подогревания (или охлаждения) служат в основном трубчатые теплообменные аппараты. Одна рабочая среда протекает по трубам, а другая — с внешней стороны труб, внутри корпуса. Схема охладителя изображена на рисунке ниже. Горячее масло течет по трубам, расположенным по двум стенкам в корпусе, имеющем форму листового цилиндра. За трубами идет охлаждающая вода. Для повышения эффективности взаимодействия всех рабочих тел поток пропускается волнообразно.


Принцип действия маслоохладителя

1 — корпус; 2 — трубы холодильнике; 3 — выход масла; 4 — выход охлаждающей воды; 5 — вход масла; 6 — вход охлаждающей воды

Аналогично выглядит и схема подогревателя. В последнее время все чаще используют пластинчатые воздухоподогреватели и охладители. Они обладают гораздо лучшими теплообменными свойствами. В конденсаторах осуществляется переход рабочего тела из газообразного в жидкое агрегатное состояние. На судах конденсаторы используют для конденсации водяного пара в случае получения воды при замкнутом паровом цикле. Способ действия трубчатого парового конденсатора поясняется на следующем рисунке. В металлическом корпусе размещены трубы, через которые течет забортная вода по двойному циркуляционному контуру.


Принцип действия конденсатора

1 — трубки; 2 — корпус; 3 — воздух; 4 — конденсационная вода; 5 — охлаждающая вода; 6 — отработавший пар

Отработавший пар, имеющий обычно низкое давление (около 0,005 МПа), выходит из паровой турбины через большое выходное отверстие, расположенное, например, на паровыпускном патрубке, и устремляется к конденсатору. Точка конденсации составляет 32,55°С. При этой температуре теплота конденсации забирается более холодной забортной водой. Конденсат на дальнейшем пути может быть охлажден в конденсаторе. В современных конденсаторах переохлаждение конденсата не должно превышать 0,5— 1,0°С, так как оно влечет за собой потери теплоты во всем тепловом контуре, т. е. и в паротурбинной установке. Имеющийся в конденсаторе воздух непрерывно отводится. Применяемые в современных судовых энергетических установках с паровой турбиной конденсаторы имеют гораздо более сложную конструкцию, чем показанная на рисунке, но принцип действия одинаков. Пресная вода особенно ценится на океанском судне, так как запас пресной воды в специальных цистернах ограничен. Пресная вода используется как для бытовых, так и для технических целей. Кроме того, необходимо компенсировать циркулирующую в паровом цикле пресную воду, часть которой во время работы теряется из-за недостаточной герметичности клапанов, турбин, вентиляторов и т. д.

Для этой цели на судах применяют испарители. Они служат как для получения пресной воды из морской путем частичного испарения, так и для очистки пресной воды из цистерн методом дистилляции. При получении пресной воды из морской последняя нагревается до такой степени, что она частично испаряется. Полученный таким образом вторичный пар подводится к конденсатору, в котором и получают готовый продукт. Остаточная морская вода (рассол) с большим содержанием соли выбрасывается за борт. На судах с паровым двигателем в качестве теплоносителя в испарителях чаще всего используется водяной пар. В дизельных энергетических установках для повышения КПД применяют вакуумные испарители, обогреваемые отработавшей водой из контура охлаждения главного двигателя. Эту воду в любом случае необходимо охлаждать перед очередной ее подачей в охлаждающие полости главного двигателя. Вода отдает свое тепло испарителям, нагревая при этом морскую воду до 40—45°С. Подогретая таким образом вода в камере, где давление достигает 0,007—0,008 МПа, начинает частично испаряться, образуя вторичный пар. В результате конденсации вторичного пара в конденсаторе, составляющем вместе с испарителем-генератором блок-секцию, получают конденсат пресной воды, т. е. дистиллят.

Автор статьи

Куприянов Денис Юрьевич

Куприянов Денис Юрьевич

Юрист частного права

Страница автора

Читайте также: