Что такое иск интеллект

Обновлено: 01.05.2024

Есть модные слова: искусственный интеллект (ИИ), машинное обучение и нейросети. Разберёмся, что есть что и зачем оно нужно.

Чем не угодили обычные алгоритмы

С момента создания первых компьютеров люди давали им инструкции: делай то-то, в таком-то порядке. Порядок и описание действий называется алгоритмом. Все программы, которые вас окружают, работают на базе алгоритмов. Там всё чётко: «Если нажата такая кнопка, сделай вот это».

Проблема алгоритмов в том, что они совершенно беспомощны за пределами своих инструкций. Компьютеры не умеют ориентироваться по ситуации. Если в алгоритме что-то не прописано, компьютер этого не сделает, даже если от этого зависит его жизнь. Если бы компьютеры умели ориентироваться в нестандартных ситуациях, мы бы никогда не видели ошибок и «синих экранов смерти».

Например, вы сказали роботу «Перед переходом улицы посмотри сначала налево, а потом направо, и если машин нет, то переходи дорогу». Робот подошёл к переходу. Он посмотрел налево, увидел там асфальтоукладчик. Асфальтоукладчик — это не машина, поэтому робот переходит дорогу, его вкатывает в асфальт. А что? Такой алгоритм.

Что такое искусственный интеллект

Чтобы роботы вели себя немного умнее, им пишут сложные алгоритмы. Но проблема остаётся: всё, что в алгоритм не попало, никогда не будет исполнено. И разработчики уже много десятилетий мечтают научить машины думать более самостоятельно. Для этого придумали много чего, в том числе — нейросети.

Что такое нейросети

Есть много мифов о нейросетях: будто это компьютерный разум, самообучающаяся система, мыслящая программа и так далее. Всё это не так.

На самом деле нейросеть — это просто очень сложная база данных с кучей формул. Данные поступают с одного конца базы данных, обрабатываются через кучу формул и выдаются с другого конца. Никаких мыслей там нет — просто математика. Сложность в том, чтобы вывести те формулы, благодаря которым нейросеть даёт хоть сколько-нибудь полезный результат. Выведение этих формул — и есть машинное обучение. У нас будет отдельная статья о том, как это всё устроено.

Вот самое простое отображение структуры нейросети. Слева ячейки ввода данных, справа ячейки вывода данных, а между ними — какой-то скрытый слой, в котором нейросеть совершает свои математические вычисления. Пока что это может быть непонятно, но мы еще расскажем об этом отдельно.

Чем нейросети отличаются от алгоритмов

В алгоритмах разработчики сразу прописывают правильную последовательность действий, которые дают какой-то предсказуемый результат. Например, разработчик пишет программу для расчета площади квартиры по чертежу, и там пошагово описаны все действия: умножь, сложи, вычти и т. д. Если посмотреть на этот алгоритм, будет понятно его устройство, в него можно внести изменения.

Нейросетям вместо алгоритмов дают много заранее правильно решенных задач. Например, десять тысяч планов квартир с уже прописанными площадями. И нейросеть начинает угадывать, какой результат от нее ожидают. Отдельный алгоритм говорит ей, правильно она угадала или нет, и со временем она учится угадывать всё более правильно.

По ходу обучения у нейросети формируются связи, которые позволяют ей угадывать полезный результат. Какие это связи, никто не понимает — мы можем их пронаблюдать, но не всегда можем понять принцип, по которым они формируются.

Короче: алгоритм делает то, что ему сказано, и дает четкий предсказуемый результат. Нейросеть угадывает, что мы от нее хотим, по непонятному нам принципу. При этом, если сеть достаточно хорошо обучена, ее угадывания могут быть достаточно точными.

Что нужно понимать о нейросетях

Нейросети в современном виде — это машины по обработке чисел. Нейросеть не понимает, что смотрит на картинку или водит машинку, — она лишь видит числа на входе и выдаёт числа на выходе. Она даже не знает, что у её чисел на выходе для нас есть какое-то значение.

Например, в этом видео нейросеть получает семь чисел на входе (это расстояния до препятствий и направление движения) и выдает два числа на выходе — поворот руля и газ-тормоз. И уже симулятор гоночной игры превращает эти числа в движение машинки. Нейронка просто обрабатывает числа:

Нейросеть всё еще не умеет импровизировать. Она может действовать в ситуации некоторой непредсказуемости, но генерировать оригинальные решения — нет.

Нейросеть можно запустить на любом компьютере, особое железо не нужно. Это просто алгоритм и данные. Их можно скопировать, заархивировать и выложить в интернет.

При этом есть и специальное железо — нейронные процессоры или, по-другому, ИИ-ускорители. Это те же микропроцессоры, но соединённые таким образом, чтобы быстрее обсчитывать именно нейронки. Но они нужны только для скорости, так-то принципиально нейронку можно рассчитать и на обычном процессоре.

На нынешнем витке развития нейросети способны лишь воспроизводить то, чему их научили. Свободное творчество с чистого листа пока не изобрели.

Где используется ИИ

Вокруг нас уже много устройств и сервисов, внутри которых есть ИИ в том или ином виде.

Голосовые помощники в телефонах и колонках распознают речь и команды, чтобы показать нам лучший маршрут, результат поиска или зачитать прогноз погоды. Та же «Алиса» распознаёт речь, анализирует её, определяет тематику диалога, выделяет полезную для поиска информацию и синтезирует ответы помощника — и во всём ей помогают заранее натренированные нейросети. Подробнее про устройство «Алисы» читайте на Хабре.

Чат-боты на сайтах понимают типовые вопросы, даже если они сформулированы по-разному, и отвечают на них. Это позволяет нанимать меньше людей в техподдержку. Они отличаются от примитивных ботов «Оставь-свой-номер-и-мы-перезвоним» тем, что распознают текст вопроса и сами находят на него ответ в своей базе знаний. Чаще всего внутри таких ботов крутится TensorFlow — система машинного обучения от Google с открытыми исходниками. Хотите собрать такого бота самостоятельно — держите инструкцию.

Умные фильтры в фотокамерах сами определяют, когда вы снимаете против солнца, и добавляют яркости в тенях, чтобы картинка получилась сбалансированной. Если делаете селфи — камера понимает, что на фото будет лицо и делает его ещё красивее: убирает прыщики, морщинки и торчащие волоски. В последних моделях телефонов Honor за это отвечает отдельный модуль в процессоре — Neural Network Processing Unit: NPU. Он управляет простой нейронкой, но даже её хватает для того, чтобы делать классные фотки.

Вариантов реализации ИИ много, но их все можно разделить на две группы — решение узких задач и полноценный искусственный интеллект общего назначения.

ИИ общего назначения

А вот здесь всё не так здорово, как в решении прикладных задач. Дело в том, что научить компьютер мыслить как человек пока невозможно. Каждая область мышления — отдельная программа, которая должна уметь работать со всеми остальными программами. Реализовать такую масштабную систему пока невозможно — нет ни алгоритмов, ни вычислительной мощности для этого, плюс не на чем обучать.

Есть имитации искусственного интеллекта в относительно широких областях, но полноценно мыслить как люди они не могут. Например, разработка компании IBM — ИИ Watson — может строить логические связи между множеством фактов и делать правильные выводы на их основе. Одно из применений Ватсона — постановка диагнозов в медицине. Ещё он круто играет в «Jeopardy!» — аналог «Своей игры» на американском ТВ.


IBM назначила приз в миллион долларов тому, кто победит Ватсона в «Своей игре». До сих пор никому это не удалось.

Но даже Ватсон не может одновременно распознавать лица, писать актуальный и осмысленный текст, поддерживать полноценный диалог и принимать решения, поехать ли в выходные на шашлыки или провести время с детьми. Возможно, ситуация изменится с выходом полноценных квантовых компьютеров, но до этого пока ещё очень далеко.

Плюс, есть чисто философская проблема: люди пока что не поняли до конца, что такое сознание, что его определяет, что такое разум и интеллект. Что, если наш мозг — тоже лишь нейросеть, которая видит информацию на входе и выдаёт действия на выходе? А всё, что мы считаем сознанием, — лишь внутренний шум от работы нейронов?

Но философию оставим философам. В одной из следующих статей покажем, как по нейронкам бегут сигналы, и детально разберём суть машинного обучения.

Новые профессии с практикой и наставниками — в Яндекс Практикуме. 8 часов обучения бесплатно — на попробовать.

Только глупец не понимает, что его профессия скоро отойдет к ИИ
Только глупец не понимает, что его профессия скоро отойдет к ИИ
Только глупец не понимает, что его профессия скоро отойдет к ИИ
Только глупец не понимает, что его профессия скоро отойдет к ИИ

В «Яндекс Практикуме» можно стать разработчиком, тестировщиком, аналитиком и менеджером цифровых продуктов. Первая часть обучения всегда бесплатная, чтобы попробовать и найти то, что вам по душе. Дальше — программы трудоустройства.


Приветствую читателей Хабра. Вашему вниманию предлагается перевод статьи «Everything you need to know about AI — in under 8 minutes.». Содержание направлено на людей, не знакомых со сферой ИИ и желающих получить о ней общее представление, чтобы затем, возможно, углубиться в какую-либо конкретную его отрасль.

Знать понемногу обо всё иногда (по крайней мере, для новичков, пытающихся сориентироваться в популярных технических направлениях) бывает полезнее, чем знать много о чём-то одном.

Многие люди думают, что немного знакомы с ИИ. Но эта область настолько молода и растёт так быстро, что прорывы совершаются чуть ли не каждый день. В этой научной области предстоит открыть настолько многое, что специалисты из других областей могут быстро влиться в исследования ИИ и достичь значимых результатов.

Эта статья — как раз для них. Я поставил себе целью создать короткий справочный материал, который позволит технически образованным людям быстро разобраться с терминологией и средствами, используемыми для разработки ИИ. Я надеюсь, что этот материал окажется полезным большинству интересующихся ИИ людей, не являющихся специалистами в этой области.

Введение

Искусственный интеллект (ИИ), машинное обучение и нейронные сети — термины, используемые для описания мощных технологий, базирующихся на машинном обучении, способных решить множество задач из реального мира.

В то время, как размышление, принятие решений и т.п. сравнительно со способностями человеческого мозга у машин далеки от идеала (не идеальны они, разумеется, и у людей), в недавнее время было сделано несколько важных открытий в области технологий ИИ и связанных с ними алгоритмов. Важную роль играет увеличивающееся количество доступных для обучения ИИ больших выборок разнообразных данных.

Область ИИ пересекается со многими другими областями, включая математику, статистику, теорию вероятностей, физику, обработку сигналов, машинное обучение, компьютерное зрение, психологию, лингвистику и науку о мозге. Вопросы, связанные с социальной ответственностью и этикой создания ИИ притягивают интересующихся людей, занимающихся философией.

Мотивация развития технологий ИИ состоит в том, что задачи, зависящие от множества переменных факторов, требуют очень сложных решений, которые трудны к пониманию и сложно алгоритмизируются вручную.

Растут надежды корпораций, исследователей и обычных людей на машинное обучение для получения решений задач, не требующих от человека описания конкретных алгоритмов. Много внимания уделяется подходу «чёрного ящика». Программирование алгоритмов, используемых для моделирования и решения задач, связанных с большими объёмами данных, занимает у разработчиков очень много времени. Даже когда нам удаётся написать код, обрабатывающий большое количество разнообразных данных, он зачастую получается очень громоздким, трудноподдерживаемым и тяжело тестируемым (из-за необходимости даже для тестов использовать большое количество данных).

Современные технологии машинного обучения и ИИ вкупе с правильно подобранными и подготовленными «тренировочными» данными для систем могут позволить нам научить компьютеры «программировать» за нас.


Обзор

Интеллект — способность воспринимать информацию и сохранять её в качестве знания для построения адаптивного поведения в среде или контексте

Это определение интеллекта из (англоязычной) Википедии может быть применено как к органическому мозгу, так и к машине. Наличие интеллекта не предполагает наличие сознания. Это — распространённое заблуждение, принесённое в мир писателями научной фантастики.

Попробуйте поискать в интернете примеры ИИ — и вы наверняка получите хотя бы одну ссылку на IBM Watson, использующий алгоритм машинного обучения, ставший знаменитым после победы на телевикторине под названием «Jeopardy» в 2011 г. С тех пор алгоритм претерпел некоторые изменения и был использован в качестве шаблона для множества различных коммерческих приложений. Apple, Amazon и Google активно работают над созданием аналогичных систем в наших домах и карманах.

Обработка естественного языка и распознавание речи стали первыми примерами коммерческого использования машинного обучения. Вслед за ними появились задачи другие задачи автоматизации распознавания (текст, аудио, изображения, видео, лица и т.д.). Круг приложений этих технологий постоянно растёт и включает в себя беспилотные средства передвижения, медицинскую диагностику, компьютерные игры, поисковые движки, спам-фильтры, борьбу с преступностью, маркетинг, управление роботами, компьютерное зрение, перевозки, распознавание музыки и многое другое.

ИИ настолько плотно вошёл в современные используемые нами технологии, что многие даже не думают о нём как об «ИИ», то есть, не отделяют его от обычных компьютерных технологий. Спросите любого прохожего, есть ли искусственный интеллект в его смартфоне, и он, вероятно, ответит: «Нет». Но алгоритмы ИИ находятся повсюду: от предугадывания введённого текста до автоматического фокуса камеры. Многие считают, что ИИ должен появиться в будущем. Но он появился некоторое время назад и уже находится здесь.

Термин «ИИ» является довольно обобщённым. В фокусе большинства исследований сейчас находится более узкое поле нейронных сетей и глубокого обучения.

Как работает наш мозг

Человеческий мозг представляет собой сложный углеродный компьютер, выполняющий, по приблизительным оценкам, миллиард миллиардов операций в секунду (1000 петафлопс), потребляющий при этом 20 Ватт энергии. Китайский суперкомпьютер под названием «Tianhe-2» (самый быстрый в мире на момент написания статьи) выполняет 33860 триллионов операций в секунду (33.86 петафлопс) и потребляющий при этом 17600000 Ватт (17.6 Мегаватт). Нам предстоит проделать определённое количество работы перед тем, как наши кремниевые компьютеры смогут сравниться со сформировавшимися в результате эволюции углеродными.

Точное описание механизма, применяемого нашим мозгом для того, чтобы «думать» является предметом дискуссий и дальнейших исследований (лично мне нравится теория о том, что работа мозга связана с квантовыми эффектами, но это — тема для отдельной статьи). Однако, механизм работы частей мозга обычно моделируется с помощью концепции нейронов и нейронных сетей. Предполагается, что мозг содержит примерно 100 миллиардов нейронов.


Но на этом всё не заканчивается. Каждый нейрон применяет функцию, или преобразование, к взвешенным входным сигналам перед тем, как проверить, достигнут ли порог его активации. Преобразование входного сигнала может быть линейным или нелинейным.

Изначально входные сигналы приходят из разнообразных источников: наших органов чувств, средств внутреннего отслеживания функционирования организма (уровня кислорода в крови, содержимого желудка и т.д.) и других. Один нейрон может получать сотни тысяч входных сигналов перед принятием решения о том, как следует реагировать.

Мышление (или обработка информации) и полученные в результате его инструкции, передаваемые нашим мышцам и другим органам являются результатом преобразования и передачи входных сигналов между нейронами из различных слоёв нейронной сети. Но нейронные сети в мозгу могут меняться и обновляться, включая изменения алгоритма взвешивания сигналов, передаваемых между нейронами. Это связано с обучением и накоплением опыта.

Эта модель человеческого мозга использовалась в качестве шаблона для воспроизведения возможностей мозга в компьютерной симуляции — искуственной нейронной сети.

Искусственные Нейронные Сети (ИНС)

Искусственные Нейронные Сети — это математические модели, созданные по аналогии с биологическими нейронными сетями. ИНС способны моделировать и обрабатывать нелинейные отношения между входными и выходными сигналами. Адаптивное взвешивание сигналов между искусственными нейронами достигается благодаря обучающемуся алгоритму, считывающему наблюдаемые данные и пытающемуся улучшить результаты их обработки.


Для улучшения работы ИНС применяются различные техники оптимизации. Оптимизация считается успешной, если ИНС может решать поставленную задачу за время, не превышающее установленные рамки (временные рамки, разумеется, варьируются от задачи к задаче).

ИНС моделируется с использованием нескольких слоёв нейронов. Структура этих слоёв называется архитектурой модели. Нейроны представляют собой отдельные вычислительные единицы, способные получать входные данные и применять к ним некоторую математическую функцию для определения того, стоит ли передавать эти данные дальше.

В простой трёхслойной модели первый слой является слоем ввода, за ним следует скрытый слой, а за ним — слой вывода. Каждый слой содержит не менее одного нейрона.

С усложнением структуры модели посредством увеличения количества слоёв и нейронов возрастают потенциал решения задач ИНС. Однако, если модель оказывается слишком «большой» для заданной задачи, её бывает невозможно оптимизировать до нужного уровня. Это явление называется переобучением (overfitting).

Архитектура, настройка и выбор алгоритмов обработки данных являются основными составляющими построения ИНС. Все эти компоненты определяют производительность и эффективность работы модели.

Модели часто характеризуются так называемой функцией активации. Она используется для преобразования взвешенных входных данных нейрона в его выходные данные (если нейрон решает передавать данные дальше, это называется его активацией). Существует множество различных преобразований, которые могут быть использованы в качестве функций активации.

ИНС являются мощным средством решения задач. Однако, хотя математическая модель небольшого количества нейронов довольно проста, модель нейронной сети при увеличении количества составляющих её частей становится довольно запутанно. Из-за этого использование ИНС иногда называют подходом «чёрного ящика». Выбор ИНС для решения задачи должен быть тщательно обдуманным, так как во многих случаях полученное итоговое решение нельзя будет разобрать на части и проанализировать, почему оно стало именно таким.


Глубокое обучение

Термин глубокое обучение используется для описания нейронных сетей и используемых в них алгоритмах, принимающих «сырые» данные (из которых требуется извлечь некоторую полезную информацию). Эти данные обрабатываются, проходя через слои нейросети, для получения нужных выходных данных.

Обучение без учителя (unsupervised learning) — область, в которой методики глубокого обучения отлично себя показывают. Правильно настроенная ИНС способна автоматически определить основные черты входных данных (будь то текст, изображения или другие данные) и получить полезный результат их обработки. Без глубокого обучения поиск важной информации зачастую ложится на плечи программиста, разрабатывающего систему их обработки. Модель глубокого обучения же самостоятельно способна найти способ обработки данных, позволяющий извлекать из них полезную информацию. Когда система проходит обучение (то есть, находит тот самый способ извлекать из входных данных полезную информацию), требования к вычислительной мощности, памяти и энергии для поддержания работы модели сокращаются.

Проще говоря, алгоритмы обучения позволяют с помощью специально подготовленных данных «натренировать» программу выполнять конкретную задачу.

Глубокое обучение применяется для решения широкого круга задач и считается одной из инновационных ИИ-технологий. Существуют также другие виды обучения, такие как обучение с учителем (supervised learning) и обучение с частичным привлечением учителя(semi-supervised learning), которые отличаются введением дополнительного контроля человека за промежуточными результатами обучения нейронной сети обработке данных (помогающего определить, в правильном ли направлении движется система).

Теневое обучение (shadow learning) — термин, используемый для описания упрощённой формы глубокого обучения, при которой поиск ключевых особенностей данных предваряется их обработкой человеком и внесением в систему специфических для сферы, к которой относятся эти данные, сведений. Такие модели бывают более «прозрачными» (в смысле получения результатов) и высокопроизводительными за счёт увеличения времени, вложенного в проектирование системы.

Заключение


ИИ является мощным средством обработки данных и может находить решения сложных задач быстрее, чем традиционные алгоритмы, написанные программистами. ИНС и методики глубокого обучения могут помочь решить ряд разнообразных проблем. Минус состоит в том, что самые оптимизированные модели часто работают как «чёрные ящики», не давая возможности изучить причины выбора ими того или иного решения. Этот факт может привести к этическим проблемам, связанным с прозрачностью информации.

Что такое искусственный интеллект

Сейчас технологии развиваются с немыслимой скоростью. Ранее те возможности, что, казалось бы, были доступны только профессиональным ученым, в современной жизни доступны каждому. Один из подобных прорывов – искусственный интеллект, прочно обосновавшийся во многих сферах человеческой жизни.

Сегодня поговорим о том, что такое ИИ, как он возник, где применяется, а также чем он отличается от человеческого разума.

Что представляет собой искусственный интеллект

Искусственный интеллект – это свойство интеллектуальной системы выполнять те функции и задачи, которые обычно характерны для разумных существ. Это может быть проявление каких-то творческих способностей, склонность к рассуждению, обобщение, обучение на основании полученного ранее опыта и так далее.

Искусственный интеллект – что это такое

Его развитием занимается направление науки, в рамках которого происходит аппаратное или программное моделирование тех задач человеческой деятельности, что считаются интеллектуальными. Еще под ИИ часто подразумевают направление в IT, основной целью которого является воссоздание разумных действий и рассуждений с помощью компьютерных систем.

История возникновения и развития искусственного интеллекта

Впервые термин artificial intelligence (с английского переводится как «искусственный интеллект») был упомянут в 1956 году Джоном МакКарти, основателем функционального программирования и изобретателем языка Lisp, на конференции в Университете Дартмута.

Однако сама идея подобной системы была сформирована в 1935 году Аланом Тьюрингом. Ученый дал описание абстрактной вычислительной машине, состоящей из безграничной памяти и сканера, перемещающегося вперед и назад по памяти. Однако позднее, в 1950 году, он предложил считать интеллектуальными те системы, которые в общении не будут отличаться от человека.

Тогда же Тьюринг разработал эмпирический тест для оценки машинного интеллекта. Он показывает, насколько искусственная система продвинулась в обучении общению и удастся ли ей выдать себя за человека.

Самая ранняя успешная программа искусственного интеллекта была создана Кристофером Стрейчи в 1951 году. А уже в 1952 году она играла в шашки с человеком и удивляла зрителей своими способностями предсказывать ходы. По этому поводу в 1953 году Тьюринг опубликовал статью о шахматном программировании.

Как возник и развивался искусственный интеллект

В 1965 году специалист Массачусетского технологического университета Джозеф Вайценбаум разработал программу «Элиза», которая ныне считается прообразом современной Siri. В 1973 году была изобретена «Стэндфордская тележка», первый беспилотный автомобиль, контролируемый компьютером. К концу 1970-х интерес к ИИ начал спадать.

Новое развитие искусственный интеллект получил в середине 1990-х. Самый известный пример – суперкомпьютер IBM Deep Blue, который в 1997 году обыграл в шахматы чемпиона мира Гарри Каспарова. Сегодня подобные сети развиваются очень быстро за счет цифровизации информации, увеличения ее оборота и объема. Машины довольно быстро анализируют информацию и обучаются, впоследствии они действительно приобретают способности, ранее считавшиеся чисто человеческой прерогативой.

Отличие ИИ от нейросетей и машинного обучения

Нейросети представляют собой математическую модель, компьютерный алгоритм, работа которого основана на множестве искусственных нейронов. Суть этой системы в том, что ее не нужно заранее программировать. Она моделирует работу нейронов человеческого мозга, проводит элементарные вычисления и обучается на основании предыдущего опыта, но это не соотносимо с ИИ.

Искусственный интеллект, как мы помним, является свойством сложных систем выполнять задачи, обычно свойственные человеку. К ИИ часто относят узкоспециализированные компьютерные программы, также различные научно-технологические методы и решения. ИИ в своей работе имитирует человеческий мозг, при этом основывается на прочих логических и математических алгоритмах или инструментах, в том числе нейронных сетях.

Под машинным обучением понимают использование различных технологий для самообучающихся программ. Соответственно, это одно из многочисленных направлений ИИ. Системы, основанные на машинном обучении, получают базовые данные, анализируют их, затем на основе полученных выводов находят закономерности в сложных задачах со множеством параметров и дают точные ответы. Один из наиболее распространенных вариантов организации машинного обучения – применение нейросетей.

Если сравнивать с человеком, то ИИ подобен головному мозгу, машинное обучение – это один из многочисленных способов обработки поступающих данных и решения назревающих задач, а нейросети соответствуют объединению более мелких, базовых элементов мозга – нейронов.

Разница между искусственным и естественным интеллектом

Сравнивать искусственный и естественный интеллект можно лишь по некоторым общим параметрам. Например, человеческий мозг и компьютер работают по примерно схожему принципу, включающему четыре этапа – кодирование, хранение данных, анализ и предоставление результатов. И естественный, и искусственный разум склонны к самообучению, они решают те или иные задачи и проблемы, используя специальные алгоритмы.

Помимо общих умственных способностей к рассуждению, обучению и решению проблем, человеческое мышление также имеет эмоциональную окраску и сильно зависит от влияния социума. Искусственный интеллект не имеет никакого эмоционального характера и не ориентирован социально.

Если говорить об IQ – большинство ученых склонны считать, что сей параметр оценки никак не связан с искусственным интеллектом. С одной стороны, это действительно так, ведь стандартные IQ-тесты направлены на измерение «качества» человеческого мышления и связаны с развитием интеллекта на разных возрастных этапах.

С другой стороны, для ИИ создан собственный «IQ-тест», названный в честь Тьюринга. Он помогает определить, насколько хорошо машина обучилась и способна ли она уподобиться в общении человеку. Это своего рода планка для ИИ, установленная людьми. А ведь все больше ученых склоняется к тому, что скоро компьютеры обгонят человечество по всем параметрам… Развитие технологий идет по непредсказуемому сценарию, и вполне допустимо, что так и будет.

Применение ИИ в современной жизни

В каких сферах используется искусственный разум

В зависимости от области и обширности сферы применения, выделяют два вида ИИ – Weak AI, называемый еще «слабым», и Strong AI, «сильный». В первом случае перед системой ставят узкоспециализированные задачи – диагностика в медицине, управление роботами, работа на базе электронных торговых платформ. Во втором же подразумевается решение глобальных задач.

Так, одна из наиболее популярных сфер применения ИИ – это Big Data в коммерции. Крупные торговые площадки используют подобные технологии для исследования потребительского поведения. Компания «Яндекс» вообще создает с их помощью музыку. В некоторые мобильные приложения встроены голосовые помощники вроде Siri, Алисы или Cortana. Они упрощают процесс навигации и совершения покупок в сервисе. И не стоит забывать про программы с нейросетями, обрабатывающими фото и видео.

ИИ также внедряют в производственные процессы для фиксации действий работников. Не обошлось и без внедрения новых технологических решений в транспортной сфере. Так, искусственный интеллект мониторит состояние на дорогах, фиксирует пробки, обнаруживает разные объекты в неположенных местах. А про автономное (беспилотное) вождение и так постоянно говорят…

Люксовые бренды внедряют ИИ в свои системы для анализа потребностей клиентов. Стремительно развивается использование подобных систем в системах здравоохранения, в основном при диагностике заболеваний, разработке лекарств, создании медицинских страховок, проведении клинических исследований и так далее.

Перечислить разом все области, в которых задействован искусственный интеллект, практически нереально. На данный момент он затрагивает все больше самых разных сфер. И причин на то немало – та же автоматизация производственных процессов, стремительный рост информационного оборота и инвестиций в эту сферу, даже социальное давление.

Влияние на различные области

Как искусственный разум влияет на жизнь человека

ИИ все больше проникает в экономическую сферу, и, по некоторым прогнозам, это позволит увеличить объем глобального рынка на 15,7 трлн долларов к 2030 году. Лидирующую позицию в освоении сей технологии занимают США и Китай, однако некоторые развитые страны вроде Канады, Сингапура, Германии и Японии не отстают.

Искусственный интеллект может оказать существенное влияние на рынок труда. Это может привести к массовому увольнению рабочего персонала из-за автоматизации большинства процессов. Ну и росту востребованности разработчиков, конечно.

Перспективы развития искусственного интеллекта

Современные компьютеры приобретают все больше знаний и «умений». Скептики же утверждают, что все возможности ИИ – не более чем компьютерная программа, а не пример самообучения. Однако это не мешает технологии широко распространяться в самых различных сферах и открывать невиданные ранее потенциалы для развития. Со временем компьютеры будут становиться все мощнее, а ИИ еще быстрее совершенствоваться в своем развитии.

Заключение

Не так давно, казалось бы, ученые ввели понятие «искусственный интеллект», а чуть больше полвека спустя технология уже находит широкий спрос в самых различных сферах. Сейчас искусственный разум, можно сказать, находится в шаговой доступности для любого человека – компьютер и ноутбук, смартфон и электронные часы, даже многие простейшие приложения работают именно с его помощью. ИИ в самых разных своих проявлениях проник во многие сферы человеческой жизни и прочно обосновался в них.

В последнее время мы все больше слышим об искусственном интеллекте. Он применяется практически везде: от сферы высоких технологий и сложных математических вычислений до медицины, автомобилестроения и даже при работе смартфонов. Технологии, лежащие в основе работы ИИ в современном представлении, мы используем каждый день и порой даже можем не задумываться об этом. Для обучения искусственного интеллекта используется машинное и глубинное обучение, а произведения, созданные нейросетями, продают за миллионы долларов. Но что такое искусственный интеллект? Как он работает? И представляет ли опасность?


BB скоро будет везде!

Что такое искусственный интеллект

Для начала давайте определимся с терминологией. Если вы представляете себе искусственный интеллект, как что-то, способное самостоятельно думать, принимать решения, и в целом проявлять признаки сознания, то спешим вас разочаровать. Практически все существующие на сегодняшний день системы даже и близко не «стоят» к такому определению ИИ. А те системы, что проявляют признаки подобной активности, на самом деле все-равно действуют в рамках заранее заданных алгоритмов.

Порой алгоритмы эти весьма и весьма продвинутые, но они остаются теми «рамками», в пределах которых работает ИИ. Никаких «вольностей» и уж тем более признаков сознания у машин нет. Это просто очень производительные программы. Но они «лучшие в своем деле». К тому же системы ИИ продолжают совершенствоваться. Да и устроены они совсем небанально. Даже если откинуть тот факт, что современный ИИ далек от совершенства, он имеет с нами очень много общего.

Как работает искусственный интеллект

В первую очередь ИИ может выполнять свои задачи (о которых чуть позже) и приобретать новые навыки благодаря глубокому машинному обучению. Этот термин мы тоже часто слышим и употребляем. Но что он означает? В отличие от «классических» методов, когда всю необходимую информацию загружают в систему заранее, алгоритмы машинного обучения заставляют систему развиваться самостоятельно, изучая доступную информацию. Которую, к тому же, машина в некоторых случаях тоже может искать самостоятельно.

Например, чтобы создать программу для обнаружения мошенничества, алгоритм машинного обучения работает со списком банковских транзакций и с их конечным результатом (законным или незаконным). Модель машинного обучения рассматривает примеры и разрабатывает статистическую зависимость между законными и мошенническими транзакциями. После этого, когда вы предоставляете алгоритму данные новой банковской транзакции, он классифицирует ее на основе шаблонов, которые он подчерпнул из примеров заранее.

Как правило, чем больше данных вы предоставляете, тем более точным становится алгоритм машинного обучения при выполнении своих задач. Машинное обучение особенно полезно при решении задач, где правила не определены заранее и не могут быть интерпретированы в двоичной системе. Возвращаясь к нашему примеру с банковскими операциями: по-факту на выходе у нас двоичная система исчисления: 0 — законная операция, 1 — незаконная. Но для того, чтобы прийти к такому выводу системе требуется проанализировать целую кучу параметров и если вносить их вручную, то на это уйдет не один год. Да и предсказать все варианты все-равно не выйдет. А система, работающая на основе глубокого машинного обучения, сумеет распознать что-то, даже если в точности такого случая ей раньше не встречалось.

Глубокое обучение и нейронные сети

В то время, как классические алгоритмы машинного обучения решают многие проблемы, в которых присутствует масса информации в виде баз данных, они плохо справляются с, так сказать, «визуальными и аудиальными» данными вроде изображений, видео, звуковых файлов и так далее.

Например, создание модели прогнозирования рака молочной железы с использованием классических подходов машинного обучения потребует усилий десятков экспертов в области медицины, программистов и математиков,- заявляет исследователь в сфере ИИ Джереми Говард. Ученые должны были бы сделать много более мелких алгоритмов для того, чтобы машинное обучение справлялось бы с потоком информации. Отдельная подсистема для изучения рентгеновских снимков, отдельная — для МРТ, другая — для интерпретации анализов крови, и так далее. Для каждого вида анализа нам нужна была бы своя система. Затем все они объединялись бы в одну большую систему… Это очень трудный и ресурсозатратный процесс.

Алгоритмы глубокого обучения решают ту же проблему, используя глубокие нейронные сети, тип архитектуры программного обеспечения, вдохновленный человеческим мозгом (хотя нейронные сети отличаются от биологических нейронов, принцип действия у них почти такой же). Компьютерные нейронные сети — это связи «электронных нейронов», которые способны обрабатывать и классифицировать информацию. Они располагаются как-бы «слоями» и каждый «слой» отвечает за что-то свое, в итоге формируя общую картину. Например, когда вы тренируете нейронную сеть на изображениях различных объектов, она находит способы извлечения объектов из этих изображений. Каждый слой нейронной сети обнаруживает определенные особенности: форму объектов, цвета, вид объектов и так далее.


Поверхностные слои нейронных сетей обнаруживают общие особенности. Более глубокие слои уже выявляют фактические объекты. На рисунке схема простой нейросети. Зелёным цветом обозначены входные нейроны (поступаюзая информация), голубым — скрытые нейроны (анализ данных), жёлтым — выходной нейрон (решение)

Нейронные сети — это искусственный человеческий мозг?

Несмотря на похожее строение машинной и человеческой нейросети, признаками нашей центральной нервной системы они не обладают. Компьютерные нейронные сети по-сути все те же вспомогательные программы. Просто вышло так, что самой высокоорганизованной системой для проведения вычислений оказался наш мозг. Вы ведь наверняка слышали выражение «наш мозг — это компьютер»? Ученые просто «повторили» некоторые аспекты его строения в «цифровом виде». Это позволило лишь ускорить вычисления, но не наделить машины сознанием.

Нейронные сети существуют с 1950-х годов (по крайней мере, в виде концепий). Но до недавнего времени они не получали особого развития, потому что их создание требовало огромных объемов данных и вычислительных мощностей. В последние несколько лет все это стало доступным, поэтому нейросети и вышли на передний план, получив свое развитие. Важно понимать, что для их полноценного появления не хватало технологий. Как их не хватает и сейчас для того, чтобы вывести технологию на новый уровень.


Для чего используется глубокое обучение и нейросети

Есть несколько областей, где эти две технологии помогли достичь заметного прогресса. Более того, некоторые из них мы ежедневно используем в нашей жизни и даже не задумываемся, что за ними стоит.

    — это способность программного обеспечения понимать содержание изображений и видео. Это одна из областей, где глубокое обучение сделало большой прогресс. Например, алгоритмы обработки изображений глубокого обучения могут обнаруживать различные типы рака, заболеваний легких, сердца и так далее. И делать это быстрее и эффективнее врачей. Но глубокое обучение также укоренилось и во многих приложениях, которые вы используете каждый день. Apple Face ID и Google Photos используют глубокое обучение для распознавания лица и улучшения качества снимков. Facebook использует глубокое обучение, чтобы автоматически отмечать людей на загружаемых фотографиях и так далее. Компьютерное зрение также помогает компаниям автоматически идентифицировать и блокировать сомнительный контент, такой как насилие и нагота. И, наконец, глубокое обучение играет очень важную роль в обеспечении возможности самостоятельного вождения автомобилей, чтобы они могли понимать, что их окружает.
  • Распознавание голоса и речи. Когда вы произносите команду для вашего Google Ассистента, алгоритмы глубокого обучения преобразуют ваш голос в текстовые команды. Несколько онлайн-приложений используют глубокое обучение для транскрибирования аудио- и видеофайлов. Даже когда вы «шазамите» песню, в дело вступают алгоритмы нейросетей и глубокого машинного обучения.
  • Поиск в интернете: даже если вы ищите что-то в поисковике, для того, чтобы ваш запрос был обработан более четко и результаты выдачи были максимально правильными, компании начали подключать алгоритмы нейросетей к своим поисковым машинам. Так, производительность поисковика Google выросла в несколько раз после того, как система перешла на глубокое машинное обучение и нейросети.


Пределы глубокого обучения и нейросетей

Несмотря на все свои преимущества, глубокое обучение и нейросети также имеют и некоторые недостатки.

  • Зависимость от данных: в целом, алгоритмы глубокого обучения требуют огромного количества обучающих данных для точного выполнения своих задач. К сожалению, для решения многих проблем недостаточно качественных данных обучения для создания рабочих моделей.
  • Непредсказуемость: нейронные сети развиваются каким-то странным путем. Иногда все идет как задумано. А иногда (даже если нейросеть хорошо справляется со своей задачей), даже создатели изо всех сил пытаются понять, как же алгоритмы работают. Отсутствие предсказуемости делает чрезвычайно трудным устранение и исправление ошибок в алгоритмах работы нейросетей.
  • Алгоритмическое смещение: алгоритмы глубокого обучения так же хороши, как и данные, на которых они обучаются. Проблема заключается в том, что обучающие данные часто содержат скрытые или явные ошибки или недоработки, и алгоритмы получают их «в наследство». Например, алгоритм распознавания лиц, обученный в основном на фотографиях белых людей, будет работать менее точно на людях с другим цветом кожи.
  • Отсутствие обобщения: алгоритмы глубокого обучения хороши для выполнения целенаправленных задач, но плохо обобщают свои знания. В отличие от людей, модель глубокого обучения, обученная играть в StarCraft, не сможет играть в другую подобную игру: скажем, в WarCraft. Кроме того, глубокое обучение плохо справляется с обработкой данных, которые отклоняются от его учебных примеров.

Будущее глубокого обучения, нейросетей и ИИ

Ясное дело, что работа над глубоким обучением и нейронными сетями еще далека от завершения. Различные усилия прилагаются для улучшения алгоритмов глубокого обучения. Глубокое обучение — это передовой метод в создании искусственного интеллекта. Он становится все более популярным в последние несколько лет, благодаря обилию данных и увеличению вычислительной мощности. Это основная технология, лежащая в основе многих приложений, которые мы используем каждый день.


Схемы и пути решения задач скоро заменят очень многое.

Но родится ли когда-нибудь на базе этой технологии сознание? Настоящая искусственная жизнь? Кто-то из ученых считает, что в тот момент, когда количество связей между компонентами искусственных нейросетей приблизиться к тому же показателю, что имеется в человеческом мозге между нашими нейронами, что-то подобное может произойти. Однако это заявляение очень сомнительно. Для того, чтобы настоящий ИИ появился, нам нужно переосмыслить подход к созданию систем на основе ИИ. Все то, что есть сейчас — это лишь прикладные программы для строго ограниченного круга задач. Как бы нам не хотелось верить в то, что будущее уже наступило…

А как считаете вы? Создадут ли люди ИИ? Поделитесь мнением в нашем чате в Телеграм.

Фото: Frank Augstein / AP

Об авторе: Андрей Беляев, технический директор (CTO) исследовательской компании Neurodata Lab.

Умные дома, самоуправляемые автомобили, роботы-помощники… Нас окружают инновационные технологии, в основе которых лежат алгоритмы, по своей специфике напоминающие работу человеческого мозга. Их называют по-разному: алгоритмы с использованием машинного обучения, глубокого обучения, а иногда и вовсе искусственный интеллект (ИИ).

В чем разница между этими названиями?

Все задачи, которые может решать человек или компьютер, можно условно разделить на две категории: рутинные и нерутинные.

К рутинным задачам можно отнести те, где достаточно просто найти универсальный путь решения: например, сложение чисел или измерение температуры воздуха.

Искусственным интеллектом сейчас принято называть все, что способно решать нерутинные задачи на уровне, близком к человеческому, а иногда и лучше. Такие задачи окружают нас везде. Камеры над дорогой вычисляют скорость автомобиля, распознают его знак и высылают штраф, а системы безопасности в метро и аэропортах находят преступников в толпе. Все это сегодня принято считать искусственным интеллектом, хотя в действительности алгоритмы, лежащие в основе каждой такой технологии, уникальны. И только некоторые используют машинное обучение.


Получается, что машинное обучение — это обучение ИИ

Искусственный интеллект — это название не какого-то отдельного алгоритма, но скорее группы методов, которыми пользуются для решения различного рода задач. Алгоритмы, которые используют подходы с обучением, являются лишь одной из подгрупп всего того множества алгоритмов, что принято называть искусственным интеллектом.

Машинное обучение — это подход, при котором алгоритм «учится» решать задачу. Один из самых простых примеров алгоритма, использующего машинное обучение, это классификация фотографий на те, где изображены кошки и те, где есть собаки:


Допустим, есть несколько тысяч фотографий кошек и несколько тысяч — собак. Эти данные можно загрузить в алгоритм и заставить его «учиться» отличать кошек от собак, «ругая» за ошибки в классификации и «поощряя» за правильные ответы. В зависимости от количества и качества вводных данных, а также от сложности используемого алгоритма после некоторого количества итераций с «наказанием» и «поощрением», получается обученный алгоритм, которой с разным качеством умеет отличать кошек и собак.

Применяя методы машинного обучения, эти же алгоритмы можно «натренировать» и для выполнения более сложных задач — таких как поиск людей на кадре, определение пола и возраста человека и т.д.

Такие алгоритмы можно научить решать задачи любой сложности?

В теории — да. Но на практике мы сталкиваемся с большим количеством проблем, начиная от недостаточного количества данных для обучения, заканчивая невозможностью интерпретировать действия человека при решении такой же задачи. Получается, что невозможно построить алгоритм, который эти действия бы совершал. Хороший пример — автопилотируемый автомобиль. Научить машину держать полосу, входить в повороты и автоматически перестраивать маршрут, если на дороге ремонт, сравнительно несложно, потому что есть понимание, как вел бы себя человек (а значит, как должна вести себя машина) в таких ситуациях.

Фото:Михаил Почуев / ТАСС

Однако научить автомобиль принимать решения в чрезвычайных ситуациях гораздо сложнее: проблема в том, что и самому человеку трудно понять, как именно надо поступать в том или ином экстренном случае. Поэтому человек не может показать алгоритмам примеры хорошего и плохого поведения для таких случаев.

А что насчет глубокого обучения? Чем оно отличается от машинного?

Как машинное обучение является подвидом искусственного интеллекта, так и глубокое обучение является подвидом машинного (см. картинку в начале статьи). В глубоком обучении используются те же подходы: алгоритму дают много данных и «ругают» его за ошибки. Разница здесь в том, что сами алгоритмы глубокого обучения устроены гораздо сложнее и часто используют более серьезные математические модели. Сейчас под алгоритмами глубокого обучения практически всегда подразумевают нейронные сети.

Нейронные сети? Как те, что в мозгу у человека?

Такое сравнение действительно часто используется. Нейронная сеть — это последовательность слоев, каждый из которых, в свою очередь, состоит из нейронов, и каждый выполняет свою роль. Есть нейроны (или структуры нейронов), которые учатся выделять важные элементы на изображениях, например шерсть у кошки или собаки; есть те, которые учатся делать выводы, исходя из выделенных элементов — например, если у животного длинные лапы, то, скорее всего, это собака. Эти нейроны объединяются в группы (слои), а они превращаются в единую искусственную нейронную сеть.

Фото:Neuralink

И все же можно как-то сравнить процессы внутри нейросети с деятельностью мозга?

Некоторое количество идей, используемых в нейросетях, разработчики почерпнули из знаний об устройстве человеческого мозга. Одни из самых частых задач для нейросетей — это задачи, связанные с работой с изображениями. Для таких задач используют специальный тип нейросетей, внутри которых есть так называемые сверточные слои.

Если говорить упрощенно, смысл этой сверточной нейронной сети в том, чтобы оценивать каждый элемент картинки (пиксель) не отдельно, а в группе с несколькими соседними, благодаря чему можно находить как базовые фигуры (линии, углы, и т.д.), так и объекты целиком. Примерно такой же процесс происходит и в человеческом мозге при обработке визуальной информации. После снятия всех возможных визуальных признаков в нейросети, как и в человеческом мозге, происходит анализ этих признаков, а затем принимается решение: видим мы, допустим, кошку или собаку.

Фото:Michael Dziedzic / Unsplash

А как происходит процесс обучения?

Процесс обучения алгоритма во многом напоминает процесс обучения человека. Как мы совершаем ошибки и учимся на них (например, что не стоит засовывать руку в кипящую воду), так и алгоритмы, использующие машинное обучение, совершают ошибки, за что получают штраф.

Как работает нейросеть? В качестве примера можно рассмотреть процесс обучения нейросети распознаванию лиц. Чтобы корректно обучить любую нейросеть, нужно сделать две вещи: собрать достаточное количество данных и определить, за что мы будем ее штрафовать. Применительно к этой задаче необходимо собрать несколько десятков фотографий лиц для каждого из людей, которых надо определить, и штрафовать нейросеть за то, что предсказанный ею человек не совпадает с человеком на фотографии.

Что значит «поощрять» и «штрафовать» нейросеть?

С математической точки зрения нейросеть — это функция с большим количеством параметров. Штрафование этой функции за неверное определения лица — это когда мы, упрощенно говоря, корректируем работу функции таким образом, чтобы в будущем она меньше ошибалась. Соответственно, поощрение нейросети — это когда мы ее просто не штрафуем.

График зависимости между длительностью обучения (горизонтальная ось) и конечной ошибкой (вертикальная ось). Чем дольше мы учим нейросеть, тем меньше ошибка.

График зависимости между длительностью обучения (горизонтальная ось) и конечной ошибкой (вертикальная ось). Чем дольше мы учим нейросеть, тем меньше ошибка.

Во всех примерах вы рассказываете про конкретные задачи. А можно ли нейросеть научить думать, как человек?

Это уже скорее философский вопрос. Мыслительный процесс напрямую связан с наличием сознания. Нейронная сеть, как и любой другой алгоритм машинного обучения, по своей сути является лишь математической функцией, и умеет решать лишь одну конкретную задачу. Нейросеть, которую учили отличать кошек и собак, не сможет отличить медведя от слона, ведь она даже не знала, что такие существуют. Процессы же анализа данных, которые происходят в голове у человека, намного сложнее чем те, что происходят в нейросети, так что даже при наличии данных, сопоставимых по размеру с массивом информации, которую за жизнь получает человек, сегодня обучить нейросеть думать, как человек, невозможно.

Подписывайтесь и читайте нас в Яндекс.Дзене — технологии, инновации, эко-номика, образование и шеринг в одном канале.

Автор статьи

Куприянов Денис Юрьевич

Куприянов Денис Юрьевич

Юрист частного права

Страница автора

Читайте также: