Что делает кавитация с гребными винтами судов

Обновлено: 23.04.2024

— явление образования у спинок лопастей газовых мешков, состоящих из водяного пара и воздуха, при значительных скоростях вращения винта. Газовые мешки нарушают сплошность потока жидкости и тем снижают давление в этой зоне лопасти. Вследствие К. уменьшаются осевой упор и вращающий момент. Резко понижается коэффициент полезного действия. Помимо этого при К. происходит разрушение поверхности винта. Основной мерой борьбы против К. является увеличение площади лопастей.

Самойлов К. И. Морской словарь. - М.-Л.: Государственное Военно-морское Издательство НКВМФ Союза ССР , 1941

Смотреть что такое "КАВИТАЦИЯ ГРЕБНОГО ВИНТА" в других словарях:

КАВИТАЦИЯ ГРЕБНОГО ВИНТА — возникновение кавитационных каверн на лопастях гребного винта, приводящих к изменению его гидродинамических характеристик и нередко к эрозионному разрушению лопастей (см. Кавитационная эрозия). Кавитация Гребного Винта сопровождается звук,… … Морской энциклопедический справочник

КАВИТАЦИЯ — (от лат. cavitas пустота), образование в капельной жидкости полостей, заполненных газом, паром или их смесью (т. н. кавитац. пузырьков или каверн). Кавитац. пузырьки образуются в тех местах, где давление в жидкости становится ниже нек рого критич … Физическая энциклопедия

Кавитация — Моделирование кавитации Кавитация (от лат. cavitas пустота) процесс парообразования и последующей конденсации пузырьков воздуха в потоке жидкости, сопровождающийся шумом и ги … Википедия

Кавитация — (от лат. cavitas пустота) образование в капельной жидкости полостей, заполненных газом, паром или их смесью (так называемых кавитационных пузырьков, или каверн). Кавитационные пузырьки образуются в тех местах, где давление в жидкости… … Большая советская энциклопедия

КАВИТАЦИЯ — образование газовых пузырьков в жидкости. Термин был введен ок. 1894 британским инженером Р.Фрудом. Если давление в какой либо точке жидкости становится равным давлению насыщенного пара этой жидкости, то жидкость в этом месте испаряется и… … Энциклопедия Кольера

СУДОВЫЕ ЭНЕРГЕТИЧЕСКИЕ УСТАНОВКИ И ДВИЖИТЕЛИ — устройства для обеспечения движения кораблей, катеров и других судов. К движителям относятся гребной винт и гребное колесо. В качестве судовых энергетических установок используются, как правило, паровые машины и турбины, газовые турбины и… … Энциклопедия Кольера

ПОВОРОТНО-ОТКИДНАЯ УГЛОВАЯ КОЛОНКА — Агрегат, служащий для передачи мощности от двигателя на гребной винт, реверсирования вращения винта и управления судном. Применяется в основном на катерах. Состоит из неподвижного корпуса, закрепленного фланцем к транцу, и соединенного с ним… … Морской энциклопедический справочник

Гребной винт — наиболее распространённый судовой Движитель. Состоит из насаживаемой на гребной вал ступицы с лопастями, расположенными на равных угловых расстояниях одна от другой, под некоторым углом к продольной оси вала (рис. 1). Различают Г … Большая советская энциклопедия

Водомётный движитель — водомёт, судовой движитель, у которого сила, движущая судно, создается выталкиваемой из него струей воды. В. д. представляет собой профилированную трубу (водовод), в которой водяной поток ускоряется лопастным механизмом (Гребной винт,… … Большая советская энциклопедия

ГИДРОАЭРОМЕХАНИКА — раздел механики, изучающий движение жидкостей и газов в условиях, при которых не имеют практического значения различия в сжимаемости. Такой единый подход возможен, поскольку благодаря своей текучести жидкие и газообразные среды ведут себя… … Энциклопедия Кольера

5.5.1 Природа кавитации. Кавитацией называется явление разрыва сплошности течения капельной жидкости при понижении местного давления до некоторого критического значения ркр. Область разрыва (кавитационная каверна) представляет собой объем, заполненный парами жидкости и растворенными в ней газами. Давление внутри каверны близко к давлению насыщенных паров рd при данной температуре. Отсюда кавитацию гребного винта обычно рассматривают как явление вскипания воды в потоке, вызванном винтом, при снижении местных давлений до давления насыщенных паров, полагая ркр рd.

Природу кавитации можно проследить на примере элемента лопасти, обтекаемого под углом атаки потоком жидкости, имеющим на бесконечности в точке А скорость υ0 и давление р0 (рис. 5.10). Выделим на одной линии тока с точкой А точку В у поверхности элемента лопасти. Скорость и давление в точке В обозначим соответственно через υ1 и р1. Тогда уравнение Бернулли для линии тока запишется так:

Из формулы видно, что в тех точках поверхности элемента, где υ1 > υ0 давление понижается δр < 0; в местах, где υ1 < υ0 давление повышается δр > 0. В результате на нагнетающей стороне лопасти вращающегося винта создается зона повышенного давления, на засасывающей стороне − зона пониженного давления.

Характерное распределение давлений на засасывающей и нагнетающей поверхности лопасти работающего гребного винта показано на рис. 5.10. Как следует из рисунка, площадь эпюры давлений, а следовательно, и величина упора, развиваемого гребным винтом, на 70 80% определяется разряжением на засасывающей поверхности и

только на 20 30% − повышением давления на нагнетающей поверхности лопасти.



Рисунок 5.10 − Схема обтекания элемента крыла

При определенной частоте вращения гребного винта скорость обтекания лопасти достигает значения в 3 5 раз превышающего поступательную скорость судна. При этом давление на засасывающей поверхности понижается до давления насыщенных паров. В результате холодного кипения воды из нее выделяются растворенные газы. Пары и газы оттесняют воду от поверхности лопасти и образуют на ее засасывающей стороне кавитационную каверну.

5.5.2 Стадии кавитации и влияние кавитации на работу гребного винта.В зависимости от степени понижения давленияв свободных вихрях и на поверхности лопастей, а также характера влияния кавитации на работу винта различают начальную (газовую) кавитацию, первую и вторую стадии кавитации.

Газовая кавитация в свободных вихрях, сбегающих с краев лопастей и с оси ступицы не оказывает заметного влияния на гидродинамические характеристики винта, но вызывает шум винта.

При первой стадии кавитации каверна захватывает только часть засасывающей поверхности лопасти, где скорость частиц наибольшая. На этой стадии гидродинамические характеристики гребного винта изменяются незначительно по сравнению с их значениями при безкавитационном обтекании. Объясняется это тем, что площади эпюр давлений при безкавитационной работе винта и в условиях первой стадии кавитации практически равны. Однако первая стадия кавитации нежелательна, так как является причиной механического разрушения материала лопасти - эрозии. Пары воды, переходя из области каверны в область более высоких давлений, конденсируются. Процесс конденсации пара и смыкания (разрушения) кавитационных пузырьков происходит с большой скоростью. В момент конденсации пузырьков пара вода мгновенно заполняет образующую пустоту, нанося по лопасти гидродинамические удары, причем местные давления достигают больших значений. В результате, в местах замыкания каверны, поверхность лопасти разрушается.

На второй стадии кавитационная каверна захватывает всю засасывающую сторону лопасти и замыкается в потоке за гребным винтом. На этой стадии кавитации эрозии не происходит, так как пары конденсируются за пределами лопасти. Однако гидродинамические качества винта по сравнению с безкавитационным обтеканием заметно ухудшаются. Увеличение частоты вращения винта уже не приводит к уменьшению давления на засасывающей поверхности лопасти, где р рd, отчего упор винта практически не растет. Кроме того, потоком обтекается профиль более низкого гидродинамического качества (за счет каверны). Это вызывает увеличение вращающего момента, приложенного к винту, и уменьшение КПД движителя. Представление об ухудшении гидродинамических качеств винта можно составить по кривым действия винта, отвечающим безкавитационному обтеканию и кавитации различной степени развития (рис. 5.11). Сплошными линиями нанесены зависимости коэффициентов упора , момента , и КПД ηр винта от относительной поступи λр при безкавитационнном обтекании и в первой стадии кавитации. Пунктирные линии представляют те же зависимости при наступлении второй стадии кавитации. Видно, что ухудшение гидродинамических характеристик наблюдается с уменьшением λр (например, с увеличением частоты вращения винта n при υp = const), что обусловлено увеличением углом атаки на лопастях. Величины , и ηр во второй стадии кавитации зависят не только от λр, но и от параметра χ, называемого числом кавитации. Последнее характеризует величину предельного разряжения на лопасти, (в долях скоростного напора), которое может быть достигнуто в воде в заданных условиях:

где ра - атмосферное давление; hс - глубина погружения винта (рис. 5.10).

Рисунок 5.11 − Кривые действия кавитирующего винта

Число кавитации определяется только внешними факторами (атмосферным давлением, глубиной погружения винта, плотностью и температурой воды, от которой зависит давление насыщенных паров), поступательной скоростью υp и не зависит от геометрических элементов гребного винта.

Критическое число кавитации χкр соответствует возможному наибольшему разрежению на лопастях при докавитационных режимах их обтекания. Начало кавитации гребного винта определяется условием χ = χкр. При χ > χкр кавитация отсутствует, при χ < χкр винт кавитирует, причем тем больше, чем меньше число χ по сравнению χкр (рис. 5.11).

В какой бы стадии не протекала кавитация, она всегда приводит к нежелательным последствиям: усиливает шум работающего винта, вызывает эрозию лопастей, снижает гидродинамические характеристики гребного винта, увеличивает неравномерность загрузки лопастей, что является одной из причин вибрации гребного вала и, как следствие, корпуса судна. Поэтому при проектировании винтов стремятся обеспечить их безкавитационную работу. С этой целью применяют профили с более равномерным распределением давлений по лопасти, увеличивают дисковое отношение, уменьшают относительную толщину лопасти, повышают давление на засасывающей стороне лопасти за счет погружения оси винта и т.п.

В настоящее время не существует гребных винтов, свободных от кавитации при любых частотах вращения. В некоторых случаях винты судов могут работать в условиях, характерных для первой стадии кавитации или приближающихся к ней.

Во избежание создания условий, способствующих кавитации винтов, необходим контроль за их состоянием. Не должны допускаться к плаванию суда с погнутыми лопастями винтов и с зазубренными кромками лопастей, плохим состоянием корпуса, кронштейнов обтекателей валов, стабилизаторов, расположенных перед движителями.

Для быстроходных судов (глиссирующие катера, катера на подводных крыльях и т.п.) во многих случаях не удается избежать кавитации гребных винтов и они проектируются с учетом кавитации – кавитирующие и суперкавитирующие винты (СКВ). Под суперкавитацией понимают сильно развитую вторую стадию кавитации, когда обтекание лопастей винта происходит со срывом струй и каверна уходит за пределы лопастей. Исходя из того, что при суперкавитации основная часть упора создается за счет давления на нагнетающей поверхности лопасти и форма засасывающей поверхности не играет существенной роли, СКВ имеют клиновидный профиль сечения лопасти и искривленную нагнетающую поверхность (рис. 5.12). Такая форма лопасти, с одной стороны, способствует образованию каверны оптимальных размеров, с другой - обладает наименьшим сопротивлением вращению гребного винта. В условиях суперкавитации такие винты обладают более высокими гидродинамическими качествами по сравнению с некавитирующими гребными винтами.

Конструктивной особенностью СКВ является также острая входящая кромка лопасти и смещение наибольшей толщины профиля к выходящей кромке. Клиновидные профили такой формы позволяют

уменьшить толщину каверн, образующихся в междулопастном пространстве, снизить их взаимное влияние и тем самым повысить гидродинамические характеристики винта. СКВ имеют сравнительно небольшое дисковое отношение Θ = 0,40 0,55, узкие лопасти, их число z = 2 3, что уменьшает возможность взаимного влияния каверн каждой лопастей.



Рисунок 5.12 − Профили сечений лопастей суперкавитирующих винтов

Положительные качества СКВ проявляются при работе их на расчетном режиме в условиях полностью развитой кавитации. Для режимов, отличных от расчетных, когда кавитация отсутствует или развита частично, происходит повышенное вихреобразование позади тупой выходящей кромки лопасти СКВ, вследствие чего его КПД становится ниже, чем у обычных винтов. Начиная с χ = 0,4 и выше, СКВ уже уступают обычным гребным винтам.

Коллапс — резкое сжатие каверны при повышении давления.

Питтинг — разрушение металла, из-за кавитации.

КАВИТАЦИЯ —образование газовых пузырьков в жидкости. Термин был введен около 1894 британским инженером Р.Фрудом.

Если давление в какой-либо точке жидкости становится равным давлению насыщенного пара этой жидкости, то жидкость в этом месте испаряется и образуется паровой пузырек.

Паровые пузырьки в жидкости легче образуются при пониженном давлении. Когда же давление окружающей среды становится больше давления насыщенного пара жидкости, кавитационный пузырек с силой схлопывается. Такое схлопывание пузырьков создает шум, вызывает вибрацию и повреждения конструкций, неблагоприятно отражается на работе соответствующих машин и механизмов. Местное понижение давления в жидкости происходит при быстром относительном движении тела и жидкости.

Кавитационный коэффициент.Явление кавитации совершенно одинаково и для потока, обтекающего неподвижное тело, и для среды, в которой движется тело. В обоих случаях важны лишь относительная скорость и абсолютное давление. Соотношение между давлением и скоростью, при которых происходит кавитация, дается безразмерным критерием s, который называется кавитационным коэффициентом (числом кавитации) и определяется выражением

где pv – давление насыщенного пара жидкости при данной температуре.

Типы кавитации.При определенной скорости течения воды местное давление у поверхности крыла (катер) понижается до давления водяного пара. На поверхности крыла появляются кавитационные каверны. Пузыри растут, смещаясь в направлении течения. (Поскольку пузыри образуются возле поверхности крыла, они имеют полусферическую форму.) Такой тип кавитации называется нестационарной (сбегающей) пузырьковой кавитацией. Если на поверхности имеется какой-нибудь выступ, то пузыри концентрируются на нем.

Кавитация может происходить в зоне вихрей, образующихся в местах повышенного сдвига и пониженного давления. Вихревая кавитация часто наблюдается на передней кромке подводных крыльев, на передних кромках лопастей и позади ступицы гребного винта. Возможно одновременное возникновение разных типов кавитации. Кавитация в жидкости, вызываемая звуковой волной, называется акустической.

Кавитация и техника.Скорость течения обычно сильно снижается у задней кромки профиля. Здесь давление становится выше давления пара. Как только условия, благоприятные для кавитации, исчезают, пузырьки тут же схлопываются. Энергия, высвобождающаяся при схлопывании пузырей, весьма значительна.

Эрозия. Большая энергия, рассеиваемая при схлопывании кавитационных пузырей, может приводить к повреждению поверхностей подводных конструкций, гребных винтов, турбин, насосов и даже узлов ядерных реакторов. Масштабы такого явления, называемого гидравлической эрозией, могут быть разными – от точечной поверхностной эрозии после многих лет эксплуатации до катастрофического выхода из строя больших конструкций.

Вибрация. Кавитация на гребных винтах может вызывать периодические колебания давления, действующего на корпус судна и силовые установки. Кавитационная вибрация судна создает дискомфортные условия для пассажиров и команды.

КПД и скорость. Кавитация может существенно увеличивать гидродинамическое сопротивление, в результате чего снижается коэффициент полезного действия гидравлического оборудования. Чрезмерная кавитация на гребном винте может уменьшить его тягу и ограничить максимальную скорость судна; кавитация может также быть причиной снижения производительности турбины или насоса и даже срыва его работы.

Шум. Некоторая часть энергии, высвобождающейся при схлопывании кавитационных пузырей, преобразуется в звуковые волны. Такой шум особенно нежелателен на военно-морских судах, поскольку повышает вероятность их обнаружения.

Как правило, кавитация нежелательна (в морской и турбонасосной технике). Но в некоторых случаях ее вызывают намеренно. Примером может служить кавитационный гидромонитор. Большая энергия, высвобождающаяся при схлопывании кавитационных пузырей в водяной струе, используется для бурения (за счет эрозии) горных пород и для обработки поверхностей.

КАВИТАЦИЯ ГРЕБНОГО ВИНТА возникновение кавитационных каверн на лопастях гребного винта, приводящих к изменению его гидродинамических характеристик и нередко к эрозионному разрушению лопастей (см. Кавитационная эрозия). Кавитация Гребного Винта сопровождается звук, излучением в широком спектре частот. Возникая, как правило, в свободных вихрях, сходящих с концов лопастей и ступицы гребного винта, при увеличении скорости судна кавитация распространяется по засасывающей стороне лопастей от их концов к корню. Первоначально кавитация охватывает только часть ширины лопасти вблизи входящей кромки или в районе ее наибольшей толщины. По мере дальнейшего роста скорости (сни-жения числа кавитации) кавитационной каверны распространяются вдоль хорды лопасти и при некотором значении скорости захватывают лопасть полностью. При больших скоростях каверны выходят за пределы лопасти. Если винт работает в неравномерном потоке, возможны вспышки кавитации и на нагнетающей стороне. Режимы, при которых каверны охватывают только часть поверхности лопасти и замыкаются на ней, не сопровождаются изменением кривых действия винта и называются 1-й стадией кавитации. На этой стадии наиболее вероятно возникновение эрозии. При более ин-тенсивном развитии кавитации за счет ухудшения гидродинамического качества профилей и стеснения потока кавернами снижаются упор, момент и КПД винта. Этим режимам соответствует 2-я стадия кавитации. Кавитация Гребного Винта, при которой каверны простираются за пределы лопасти, иногда называют суперкавитацией. Чтобы избежать кавитации лопастей, при проектировании гребных винтов увеличивают дисковое отношение винта. На скоростных судах устранить Кавитацию Гребного Винта невозможно, поэтому проектируют винты, приспособленные к работе в условиях кавитации (кавитирующие и суперкави-тирующие).

Морской энциклопедический справочник. — Л.: Судостроение . Под редакцией академика Н. Н. Исанина . 1986 .

Смотреть что такое "КАВИТАЦИЯ ГРЕБНОГО ВИНТА" в других словарях:

КАВИТАЦИЯ ГРЕБНОГО ВИНТА — явление образования у спинок лопастей газовых мешков, состоящих из водяного пара и воздуха, при значительных скоростях вращения винта. Газовые мешки нарушают сплошность потока жидкости и тем снижают давление в этой зоне лопасти. Вследствие К.… … Морской словарь

КАВИТАЦИЯ — (от лат. cavitas пустота), образование в капельной жидкости полостей, заполненных газом, паром или их смесью (т. н. кавитац. пузырьков или каверн). Кавитац. пузырьки образуются в тех местах, где давление в жидкости становится ниже нек рого критич … Физическая энциклопедия

Кавитация — Моделирование кавитации Кавитация (от лат. cavitas пустота) процесс парообразования и последующей конденсации пузырьков воздуха в потоке жидкости, сопровождающийся шумом и ги … Википедия

Кавитация — (от лат. cavitas пустота) образование в капельной жидкости полостей, заполненных газом, паром или их смесью (так называемых кавитационных пузырьков, или каверн). Кавитационные пузырьки образуются в тех местах, где давление в жидкости… … Большая советская энциклопедия

КАВИТАЦИЯ — образование газовых пузырьков в жидкости. Термин был введен ок. 1894 британским инженером Р.Фрудом. Если давление в какой либо точке жидкости становится равным давлению насыщенного пара этой жидкости, то жидкость в этом месте испаряется и… … Энциклопедия Кольера

СУДОВЫЕ ЭНЕРГЕТИЧЕСКИЕ УСТАНОВКИ И ДВИЖИТЕЛИ — устройства для обеспечения движения кораблей, катеров и других судов. К движителям относятся гребной винт и гребное колесо. В качестве судовых энергетических установок используются, как правило, паровые машины и турбины, газовые турбины и… … Энциклопедия Кольера

ПОВОРОТНО-ОТКИДНАЯ УГЛОВАЯ КОЛОНКА — Агрегат, служащий для передачи мощности от двигателя на гребной винт, реверсирования вращения винта и управления судном. Применяется в основном на катерах. Состоит из неподвижного корпуса, закрепленного фланцем к транцу, и соединенного с ним… … Морской энциклопедический справочник

Гребной винт — наиболее распространённый судовой Движитель. Состоит из насаживаемой на гребной вал ступицы с лопастями, расположенными на равных угловых расстояниях одна от другой, под некоторым углом к продольной оси вала (рис. 1). Различают Г … Большая советская энциклопедия

Водомётный движитель — водомёт, судовой движитель, у которого сила, движущая судно, создается выталкиваемой из него струей воды. В. д. представляет собой профилированную трубу (водовод), в которой водяной поток ускоряется лопастным механизмом (Гребной винт,… … Большая советская энциклопедия

ГИДРОАЭРОМЕХАНИКА — раздел механики, изучающий движение жидкостей и газов в условиях, при которых не имеют практического значения различия в сжимаемости. Такой единый подход возможен, поскольку благодаря своей текучести жидкие и газообразные среды ведут себя… … Энциклопедия Кольера

Здравствуйте сегодня я хотел бы написать о том что такое "Кавитация" и "Эрозия" гребных винтов и как она происходит.

Для начала узнаем что такое кавитация - Кавитация (от лат. cavita — пустота) — процесс образования и последующего схлопывания пузырьков в потоке жидкости, сопровождающийся шумом и гидравлическими ударами, образование в жидкости полостей (кавитационных пузырьков, или пустот), которые могут содержать разреженный пар.
Если площадь лопастей небольшая, то давление здесь понижается настолько, что вода, обтекающая лопасть, вскипает, выделяя пузырьки пара. Микроскопические пузырьки сливаются в более крупные—каверны, а при очень сильном разрежении — в сплошную полость, что нарушает непрерывность потока. Это явление и называется кавитацией.

Различают две стадии кавитации. На первой студии каверны невелики и на работе винта практически не сказываются.

Однако пузырьки, лопаясь, создают огромные местные давления, отчего поверхность лопасти выкрашивается. При длительной работе кавитирующего винта такие эрозионные разрушения могут быть настолько значительными, что эффективность винта снизится.

При дальнейшем повышении скорости наступает вторая стадия кавитации. Сплошная полость захватывает всю лопасть и даже может замыкаться за ее пределами. Развиваемый винтом упор падает из-за резкого увеличения лобового сопротивления и искажения формы лопастей.

Кавитацию винта можно обнаружить по тому, что скорость лодки перестает расти, несмотря на дальнейшее повышение числа оборотов; гребной винт при этом издает специфический шум, на корпус передается вибрация, лодка движется скачками.

Момент наступления кавитации зависит не только от числа оборотов, но и от ряда других характеристик. Так, чем меньше площадь лопастей, больше толщина их профиля, ближе к ватерлинии расположен винт, тем при меньшей частоте вращения, т. е. «раньше», наступает кавитация. Появлению кавитации способствуют также большой угол наклона гребного вала, дефекты лопастей — изгиб, некачественная поверхность.

Так же при кавитации и возникает эрозия так как химическая агрессивность газов в пузырьках, имеющих к тому же высокую температуру, вызывает эрозию материалов, с которыми соприкасается жидкость, в которой развивается кавитация. Эта эрозия и составляет один из факторов вредного воздействия кавитации.

Кавитационная эрозия металлов вызывает разрушение гребных винтов судов, рабочих органов насосов, гидротурбин и т. п., кавитация также является причиной шума, вибрации и снижения эффективности работы гидроагрегатов.

Схлопывание кавитационных пузырей приводит к тому, что энергия окружающей жидкости сосредотачивается в очень небольших объёмах. Тем самым, образуются места повышенной температуры и возникают ударные волны, которые являются источниками шума и приводят к эрозии металла. Шум, создаваемый кавитацией, является особой проблемой на подводных лодках, так как снижает их скрытность.

Хотя кавитация нежелательна во многих случаях, есть исключения. Например, сверхкавитационные торпеды, используемые военными, обволакиваются в большие кавитационные пузыри. Существенно уменьшая контакт с водой, эти торпеды могут передвигаться значительно быстрее, чем обыкновенные торпеды. Так сверхкавитационная торпеда «Шквал», в зависимости от плотности водной среды, развивает скорость до 370 км/ч. Еще кавитация используется при ультразвуковой очистке поверхностей твёрдых тел. Специальные устройства создают кавитацию, используя звуковые волны в жидкости. Кавитационные пузыри, схлопываясь, порождают ударные волны, которые разрушают частицы загрязнений или отделяют их от поверхности. Таким образом, снижается потребность в опасных и вредных для здоровья чистящих веществах во многих промышленных и коммерческих процессах, где требуется очистка как этап производства.

Автор статьи

Куприянов Денис Юрьевич

Куприянов Денис Юрьевич

Юрист частного права

Страница автора

Читайте также: